- #1
James1238765
- 120
- 8
- TL;DR Summary
- How to define potential energy T and kinetic energy V of a lattice grid?
A toy model of a QFT lattice (in 1 dimension) is given in [here] (at 5:55):
We assume that ##\Psi## is a vector set of four complex numbers having some values at every point on the grid, for instance:
$$\Psi_{100} =
\begin{bmatrix}
1+2i \\
3+4i \\
5+6i \\
7+8i
\end{bmatrix}$$
and
$$\Psi_{101} =
\begin{bmatrix}
11+12i \\
13+14i \\
15+16i \\
17+18i
\end{bmatrix}$$
Then,
$$\Psi_{100}^\dagger \Psi_{100} =
\begin{bmatrix}
1-2i & 3-4i & 5-6i & 7-8i
\end{bmatrix}
\begin{bmatrix}
1+2i \\
3+4i \\
5+6i \\
7+8i
\end{bmatrix}$$
$$= (1^2+2^2) + (3^2+4^2) + (5^2+6^2) + (7^2+8^2) $$
$$= 204 $$
Therefore, the sum of each of this ##\Psi_n^\dagger \Psi_n## scalar real number over all the grid points can be thought of as the total "potential energy" stored in this grid:
$$V := \sum_{grid} \Psi_n^\dagger \psi_n$$
But then,
$$\Psi_{100}^\dagger \Psi_{101} $$
$$=\begin{bmatrix}
1-2i & 3-4i & 5-6i & 7-8i
\end{bmatrix}
\begin{bmatrix}
11+12i \\
13+14i \\
15+16i \\
17+18i
\end{bmatrix}$$
$$= (1-2i)(11+12i) + (3-4i)(13+14i) + (5-6i)(15+16i) + (7-8i)(17+18i) $$
$$= 564 - 40i $$
is a messy complex number.
In what sense can the sum of this quantity ##\Psi_n^\dagger \Psi_{n+1}##:
$$T := \sum_{grid} \Psi_n^\dagger \psi_{n+1} $$
be thought of as the "kinetic energy" contained in this grid?
We assume that ##\Psi## is a vector set of four complex numbers having some values at every point on the grid, for instance:
$$\Psi_{100} =
\begin{bmatrix}
1+2i \\
3+4i \\
5+6i \\
7+8i
\end{bmatrix}$$
and
$$\Psi_{101} =
\begin{bmatrix}
11+12i \\
13+14i \\
15+16i \\
17+18i
\end{bmatrix}$$
Then,
$$\Psi_{100}^\dagger \Psi_{100} =
\begin{bmatrix}
1-2i & 3-4i & 5-6i & 7-8i
\end{bmatrix}
\begin{bmatrix}
1+2i \\
3+4i \\
5+6i \\
7+8i
\end{bmatrix}$$
$$= (1^2+2^2) + (3^2+4^2) + (5^2+6^2) + (7^2+8^2) $$
$$= 204 $$
Therefore, the sum of each of this ##\Psi_n^\dagger \Psi_n## scalar real number over all the grid points can be thought of as the total "potential energy" stored in this grid:
$$V := \sum_{grid} \Psi_n^\dagger \psi_n$$
But then,
$$\Psi_{100}^\dagger \Psi_{101} $$
$$=\begin{bmatrix}
1-2i & 3-4i & 5-6i & 7-8i
\end{bmatrix}
\begin{bmatrix}
11+12i \\
13+14i \\
15+16i \\
17+18i
\end{bmatrix}$$
$$= (1-2i)(11+12i) + (3-4i)(13+14i) + (5-6i)(15+16i) + (7-8i)(17+18i) $$
$$= 564 - 40i $$
is a messy complex number.
In what sense can the sum of this quantity ##\Psi_n^\dagger \Psi_{n+1}##:
$$T := \sum_{grid} \Psi_n^\dagger \psi_{n+1} $$
be thought of as the "kinetic energy" contained in this grid?
Last edited: