- #1
TanWu
- 17
- 5
- Homework Statement
- Throughout this Tutorial Q6 to Q9 let ##c: \mathbb{R} \rightarrow \mathbb{R}## be a differentiable function whose derivative ##c^{\prime}## is continuous at 0 with ##c^{\prime}(0)=1##.
- Relevant Equations
- ##c^{\prime}(0)=1##
The tutorial question I am working on is,
(a) Attempt
We can use mean value theorem since
##(c: \mathbb{R} \rightarrow \mathbb{R}~countinity ) \implies (c: [-d, d] \rightarrow [c(-d), c(d)]~countinity)##
Thus ##c: [-d, d] \rightarrow [c(-d), c(d)] ## is differentiable on ##(-d, d)##, then there exists ##b \in (-d, d)## such that ##c'(b) = \frac{c(-d) - c(d)}{-d - d} = \frac{f(-d) - f(d)}{-2d}##
Using result from Q6,
##b \in (-d, d) \implies \frac{1}{2} < \frac{f(-d) - f(d)}{-2d} < \frac{3}{2}##
Not sure how to prove from here.
(b) Attempt
##\frac{2}{3}(t - s) < e(t) - e(s) < 2(t - s)##
##\frac{2}{3}(t - s) + e(s) < e(t) < 2(t - s) + e(s)##
However, this is far from the expression that I am trying to prove.
(c) Nothing yet (may rely on (a) and (b))
I express gratitude to those who help
(a) Attempt
We can use mean value theorem since
##(c: \mathbb{R} \rightarrow \mathbb{R}~countinity ) \implies (c: [-d, d] \rightarrow [c(-d), c(d)]~countinity)##
Thus ##c: [-d, d] \rightarrow [c(-d), c(d)] ## is differentiable on ##(-d, d)##, then there exists ##b \in (-d, d)## such that ##c'(b) = \frac{c(-d) - c(d)}{-d - d} = \frac{f(-d) - f(d)}{-2d}##
Using result from Q6,
##b \in (-d, d) \implies \frac{1}{2} < \frac{f(-d) - f(d)}{-2d} < \frac{3}{2}##
Not sure how to prove from here.
(b) Attempt
##\frac{2}{3}(t - s) < e(t) - e(s) < 2(t - s)##
##\frac{2}{3}(t - s) + e(s) < e(t) < 2(t - s) + e(s)##
However, this is far from the expression that I am trying to prove.
(c) Nothing yet (may rely on (a) and (b))
I express gratitude to those who help
Last edited by a moderator: