- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
I have to solve the following pde:
$$u_{tt}(x, t)-u_{xt}(x, t)=0, x \in \mathbb{R}, t>0 \\ u(x, 0)=f(x), x \in \mathbb{R} \\ u_t(x, 0)=g(x), x \in \mathbb{R}$$
I have done the following:
$$\Delta(x, t)=1>0$$
so it is an hyperbolic equation.
We want to write the equation into the canonical form, which is of the form $u_{\xi \eta}=D(\xi, \eta, u, u_{\xi}, u_{\eta})$.
$u(x, t)=U(\xi, \eta)$
$\xi=at+bx \\ \eta=ct+dx$
$$u_t=aU_{\xi}+cU_{\eta} \\ u_{tt}=a^2U_{\xi \xi}+2acU_{\xi \eta}+c^2U_{\eta \eta} \\ u_{xt}=u_{tx}abU_{\xi \xi}+adU_{\xi \eta}++cbU_{\eta \xi}+cdU_{\eta \eta}$$
$$u_{tt}-u_{xt}=0 \Rightarrow (a^2-ab)U_{\xi \xi}+(2ac-ad-cb)U_{\xi \eta}+(c^2-cd)U_{\eta \eta}=0$$
Since it is hyperbolic, it has to stand that $$a^2-ab=0 \text{ and } c^2-cd=0 \\ \Rightarrow \left (a=0 \text{ or } a=b\right ) \text{ and } \left (c=0 \text{ or } c=d\right )$$
For these values we get $0 \cdot U_{\xi \eta }=0$, or not?? (Wondering)
Have I done something wrong?? (Wondering)
I have to solve the following pde:
$$u_{tt}(x, t)-u_{xt}(x, t)=0, x \in \mathbb{R}, t>0 \\ u(x, 0)=f(x), x \in \mathbb{R} \\ u_t(x, 0)=g(x), x \in \mathbb{R}$$
I have done the following:
$$\Delta(x, t)=1>0$$
so it is an hyperbolic equation.
We want to write the equation into the canonical form, which is of the form $u_{\xi \eta}=D(\xi, \eta, u, u_{\xi}, u_{\eta})$.
$u(x, t)=U(\xi, \eta)$
$\xi=at+bx \\ \eta=ct+dx$
$$u_t=aU_{\xi}+cU_{\eta} \\ u_{tt}=a^2U_{\xi \xi}+2acU_{\xi \eta}+c^2U_{\eta \eta} \\ u_{xt}=u_{tx}abU_{\xi \xi}+adU_{\xi \eta}++cbU_{\eta \xi}+cdU_{\eta \eta}$$
$$u_{tt}-u_{xt}=0 \Rightarrow (a^2-ab)U_{\xi \xi}+(2ac-ad-cb)U_{\xi \eta}+(c^2-cd)U_{\eta \eta}=0$$
Since it is hyperbolic, it has to stand that $$a^2-ab=0 \text{ and } c^2-cd=0 \\ \Rightarrow \left (a=0 \text{ or } a=b\right ) \text{ and } \left (c=0 \text{ or } c=d\right )$$
For these values we get $0 \cdot U_{\xi \eta }=0$, or not?? (Wondering)
Have I done something wrong?? (Wondering)