- #1
Watts
- 38
- 0
Any Body Seen This
Has anyone ever seen this before? [itex]P(q) ={\sqrt {\frac{{\pi ^2 }}{{48^2 \cdot \sigma ^2 }}} } \cdot \cosh (2 \cdot \sqrt {\frac{{\pi ^2 }}{{48^2 \cdot \sigma ^2 }}} \cdot (q - \mu ))^{ - 2}[/itex] I managed to derive this distribution(entirly to much time on my hands). It plays by all the rules [itex]P(q)>0 , \int\limits_{ - \infty }^\infty {P(q)dq} = 1 , \int\limits_{ - \infty }^\infty {P(q)\cdot qdq} =\mu , \int\limits_{ - \infty }^\infty {P(q) \cdot (q - \mu )^2 \cdot dq}=\sigma ^2 [/itex]
.
Has anyone ever seen this before? [itex]P(q) ={\sqrt {\frac{{\pi ^2 }}{{48^2 \cdot \sigma ^2 }}} } \cdot \cosh (2 \cdot \sqrt {\frac{{\pi ^2 }}{{48^2 \cdot \sigma ^2 }}} \cdot (q - \mu ))^{ - 2}[/itex] I managed to derive this distribution(entirly to much time on my hands). It plays by all the rules [itex]P(q)>0 , \int\limits_{ - \infty }^\infty {P(q)dq} = 1 , \int\limits_{ - \infty }^\infty {P(q)\cdot qdq} =\mu , \int\limits_{ - \infty }^\infty {P(q) \cdot (q - \mu )^2 \cdot dq}=\sigma ^2 [/itex]
.
Last edited: