- #1
karush
Gold Member
MHB
- 3,269
- 5
oops this is a pre calc question
$\tiny{hcc.18}$
the half life of silicon-32 is $710$ years.
If $10g$ are present now
how much will be present in 600 yrs?
to find out $k$ using
$$A=A_0 e^{kt}$$
$$\frac{1}{2}=e^{k \cdot 710}$$
$$\ln\left[\frac{1}{2}\right]=k\cdot710$$
$$\frac{\ln(1/2)}{710}=k=-0.00097626$$
I continued with this but the answer was ?
$\tiny{hcc.18}$
the half life of silicon-32 is $710$ years.
If $10g$ are present now
how much will be present in 600 yrs?
to find out $k$ using
$$A=A_0 e^{kt}$$
$$\frac{1}{2}=e^{k \cdot 710}$$
$$\ln\left[\frac{1}{2}\right]=k\cdot710$$
$$\frac{\ln(1/2)}{710}=k=-0.00097626$$
I continued with this but the answer was ?
Last edited: