- #1
Benzoate
- 422
- 0
Homework Statement
A problem with odd harmonics only. Show that the solution of the heat equation du/dt=c2*(d2u)/(dx2), subject to boundary conditions u(0,t)=0 and ux(L,t)=0, and the initial condition u(x,0)=f(x) , is
u(x,t)= [tex]\sum[/tex] Bnsin[([tex]\pi[/tex]/2L)(2n+1)x]e-((c*[tex]\pi[/tex]/2L)*(2n+1))^2
where n extends from 0 to [tex]\infty[/tex]
Bn=2/L[tex]\int[/tex] f(x) sin[([tex]\pi[/tex]/2L)*(2n+1)x]dx
where the limits extend from 0 to L
Homework Equations
Seperation of variables
The Attempt at a Solution
u(x,t)=X(x)T(t)
u(x,0)=f(x)
u2(x,t)=0
T'-kc2T=0
x''-kx=0
x'(0)=0
x'(L)=0
u2(0,t)=0
if u(0,t)=0 then u2(0,t)=0
u2(0,t)=0= u2(L,t)
not sure how to finish this derivation.