- #1
Biljo6985
- 3
- 0
Homework Statement
It's that time of the year. I'm trying to determine how long it will take to cook a 15 pound turkey at 400 degrees to reach a center temperature of 180 degrees, given that it takes 90 minutes to cook a 5 pound turkey to the desired center temperature. The roast is initially at 35 degrees (as was the 5 pound roast).
Homework Equations
The primary equation is the heat equation:
ut = kΔu
Initial condition: u([itex]\vec{x}[/itex],0) = 35
Boundary condition: u([itex]\vec{R}[/itex],t) = 400
The Attempt at a Solution
It seems to me that this can be treated as solving the heat equation in spherical coordinates, where the temperature varies radially.
So we get:
ut = k(urr+[itex]\frac{2}{r}[/itex]ur)
Then we let u(r,t) = X(r)Y(t)
Hence: [itex]\frac{XY'}{k}[/itex] = X''Y + (2/r)X'Y
This implies: [itex]\frac{Y'}{kY}[/itex] = (X''+(2/R)X')/X
We then take these equal to some constant, -λ say.
From here we get 2 ODE'S:
(1) Y' + kYλ = 0
(2) rX'' + 2X' + λrX = 0
We can let s(r) = r X(r)
s'(r) = X(r) + r X'(r)
s'' = X' + X' + r X'' = 2X' + rX''
Hence (2) becomes:
(3) s'' + λs = 0
This next part is where I start to get confused.
For the boundary conditions, I assume we can take X(R) = X(-R), where R is the radius of the sphere, since u(R,t) = u(-R,t) = 400 was provided.
Then, from (3), assuming λ = α2, α > 0
s(r) = A cos(αr) + B sin(αr)
Since s = rX, s(R) = R X(R) and s(-R) = -R X(-R) = -R X(R), so s(R) = -s(-R)
A cos(αR) + B sin(αr) = B sin(αR) - A cos(αR)
cos(αR) = 0
αR = (n+[itex]\frac{1}{2}[/itex])π
Hence our eigenvalues are:
αn = (n+[itex]\frac{1}{2}[/itex])π/R
Then, solving 1:
T(t) = C exp(-kλt)
We put our solutions together to get the full Fourier series:
u(r,t) = [itex]\frac{1}{2}[/itex]A0+[itex]\sum[/itex][(Ancos(αnr)+Bnsin(αnr))exp(-λnkt)]
Then I would plug in the initial condition to get the coefficients.
What I'm not sure of is how to scale this for the new mass. I guess I could assume that the radius is three times larger. I'm not even given the thermal conductivity, so I'm not sure if I am even approaching this right.
Does anyone have advice on how to proceed with this type of problem?