- #1
FranzDiCoccio
- 342
- 41
- TL;DR Summary
- I'm trying to clarify the relation between heat pumps and engines, and to understand the inequalities involved in their "Carnot cycle" versions.
The efficiency of a heat engine is calculated as ##\eta = |W|/|Q_h| = 1- |Q_c|/|Q_h|##. If this engine operates between the temperatures ##T_c## and ##T_h##, then Carnot's theorem states that ##\eta<\eta_C = 1-T_c/T_h##. This means ##T_c/T_h < |Q_c|/|Q_h|##.
Now assume that the heat engine is reversed to obtain e.g. a heat pump. Its efficiency is described by the coefficient of performance ##COP = Q_h/|W|##. This efficiency should be less than that of a "Carnot" heat pump,
$$ \frac{|Q_h|}{|Q_h|-|Q_c|} < \frac{T_h}{T_h-Tc} $$
After a little algebra this gives ##T_c/T_h > |Q_c|/|Q_h|##, i.e. the opposite inequality as before. The same result is obtained if the COP for a refrigerator is considered.
I'm not entirely clear what this means, or even whether this line of reasoning makes sense. I naively assumed that after reversing the cycle the quantities remained the same, except for their signs (I used absolute values also when not strictly necessary, to be on the safe side).
Does this simply mean that ##|Q_h|## and ##|Q_c|## in a heat pump are not quantitatively the same as in the heat engine that has been reversed to obtain it? That is, we use the same symbols but their values are not the same?
In other words, the "reversing" of the engine is not as symmetric as one might naively think?
(sorry I do not seem to be able to compile LaTeX formulas)
Now assume that the heat engine is reversed to obtain e.g. a heat pump. Its efficiency is described by the coefficient of performance ##COP = Q_h/|W|##. This efficiency should be less than that of a "Carnot" heat pump,
$$ \frac{|Q_h|}{|Q_h|-|Q_c|} < \frac{T_h}{T_h-Tc} $$
After a little algebra this gives ##T_c/T_h > |Q_c|/|Q_h|##, i.e. the opposite inequality as before. The same result is obtained if the COP for a refrigerator is considered.
I'm not entirely clear what this means, or even whether this line of reasoning makes sense. I naively assumed that after reversing the cycle the quantities remained the same, except for their signs (I used absolute values also when not strictly necessary, to be on the safe side).
Does this simply mean that ##|Q_h|## and ##|Q_c|## in a heat pump are not quantitatively the same as in the heat engine that has been reversed to obtain it? That is, we use the same symbols but their values are not the same?
In other words, the "reversing" of the engine is not as symmetric as one might naively think?
(sorry I do not seem to be able to compile LaTeX formulas)