- #1
Math Amateur
Gold Member
MHB
- 3,998
- 48
I am reading Houshang H. Sohrab's book: "Basic Real Analysis" (Second Edition).
I am focused on Chapter 4: Topology of [FONT=MathJax_AMS]R[/FONT] and Continuity ... ...
I need help in order to fully understand the proof of Theorem 4.1.10 ... ... Theorem 4.1.10 and its proof read as follows:
View attachment 9097
View attachment 9098
In the above proof by Sohrab we read the following:
" ... ...Since \(\displaystyle [a, b]\) is compact (by Proposition 4.1.9) we can find a finite subcover \(\displaystyle \mathcal{O}'' \subset \mathcal{O}'\) ... ..."My question is as follows:
If \(\displaystyle \mathcal{O}''\) is a finite cover of \(\displaystyle [a, b]\) then since \(\displaystyle K \subset [a, b]\) surely \(\displaystyle \mathcal{O}'\)' is a finite cover of K also ... ... ?BUT ... Sohrab is concerned about whether or not \(\displaystyle \mathcal{O}' \in \mathcal{O}''\) or not ... ...
Can someone please explain what is going on ...
Peter
========================================================================================The above post mentions Propositions 4.1.8 and 4.1.9 ... so I am providing text of the same ... as follows:
View attachment 9099
View attachment 9100
Hope that helps ...
Peter
I am focused on Chapter 4: Topology of [FONT=MathJax_AMS]R[/FONT] and Continuity ... ...
I need help in order to fully understand the proof of Theorem 4.1.10 ... ... Theorem 4.1.10 and its proof read as follows:
View attachment 9097
View attachment 9098
In the above proof by Sohrab we read the following:
" ... ...Since \(\displaystyle [a, b]\) is compact (by Proposition 4.1.9) we can find a finite subcover \(\displaystyle \mathcal{O}'' \subset \mathcal{O}'\) ... ..."My question is as follows:
If \(\displaystyle \mathcal{O}''\) is a finite cover of \(\displaystyle [a, b]\) then since \(\displaystyle K \subset [a, b]\) surely \(\displaystyle \mathcal{O}'\)' is a finite cover of K also ... ... ?BUT ... Sohrab is concerned about whether or not \(\displaystyle \mathcal{O}' \in \mathcal{O}''\) or not ... ...
Can someone please explain what is going on ...
Peter
========================================================================================The above post mentions Propositions 4.1.8 and 4.1.9 ... so I am providing text of the same ... as follows:
View attachment 9099
View attachment 9100
Hope that helps ...
Peter