- #1
thatboi
- 133
- 18
Consider the Heisenberg picture Hamiltonian $$H(t) = \int_{\textbf{r}}\psi^{\dagger}(\textbf{r},t)\frac{(-i\hbar\nabla+e\textbf{A})^{2}}{2m}\psi(\textbf{r},t)$$ where ##\psi(\textbf{r},t)## is a fermion field operator. To find the equations of motion that ##\psi,\psi^{\dagger}## obey. I would invoke the Heisenberg equations of motion ##i\hbar\partial_{t}\psi = [\psi(t),H(t)]## and ##i\hbar\partial_{t}\psi^{\dagger} = [\psi(t)^{\dagger},H(t)]##. I know the equations of motion should be $$i\hbar\partial_{t}\psi = \frac{1}{2m}((-i\hbar\nabla+e\textbf{A})^{2})\psi$$ and $$i\hbar\partial_{t}\psi^{\dagger} = -\frac{1}{2m}((i\hbar\nabla+e\textbf{A})^{2})\psi^{\dagger}$$
But I have redone this calculation so many times for ##\psi^{\dagger}## and do not understand how come the ##i## flips signs for the ##\psi^{\dagger}## case inside ##((i\hbar\nabla+e\textbf{A})^{2})##. In both instances, the calculation requires us taking the commutator with the same Hamiltonian ##H(t)## so why is there suddenly a sign flip now?
But I have redone this calculation so many times for ##\psi^{\dagger}## and do not understand how come the ##i## flips signs for the ##\psi^{\dagger}## case inside ##((i\hbar\nabla+e\textbf{A})^{2})##. In both instances, the calculation requires us taking the commutator with the same Hamiltonian ##H(t)## so why is there suddenly a sign flip now?