- #1
fluidistic
Gold Member
- 3,950
- 264
[tex]\Delta x \Delta p \geq \frac{\hbar}{2}[/tex].
Say I want to measure the best I can the position of an electron, in detriment of its momentum (i.e. velocity since I assume that I know its mass quite well).
When [tex]\Delta x \to 0[/tex], [tex]\Delta p[/tex] should tend to [tex]+\infty[/tex] but there's the c limit so that I can't make [tex]\Delta x \to 0[/tex]. Unless I should consider the relativistic mass of the electron and not the rest mass in the [tex]\Delta p =mv[/tex] part of the inequality? So m would tend to [tex]+\infty[/tex] and I'm not really limited by a maximum limit of velocity and I can get a very precise measure for [tex]\Delta x[/tex].
Say I want to measure the best I can the position of an electron, in detriment of its momentum (i.e. velocity since I assume that I know its mass quite well).
When [tex]\Delta x \to 0[/tex], [tex]\Delta p[/tex] should tend to [tex]+\infty[/tex] but there's the c limit so that I can't make [tex]\Delta x \to 0[/tex]. Unless I should consider the relativistic mass of the electron and not the rest mass in the [tex]\Delta p =mv[/tex] part of the inequality? So m would tend to [tex]+\infty[/tex] and I'm not really limited by a maximum limit of velocity and I can get a very precise measure for [tex]\Delta x[/tex].