MHB Help finding length of perpendiculars in a box of known dimension

AI Thread Summary
The discussion focuses on calculating the distances from a point within a box to its walls along perpendicular lines. The user has known distances from the center of each wall to the point of interest and seeks to determine the closest distances to the walls, labeled as B1 to B4. A mathematical approach is proposed, using a coordinate system centered in the box and a system of equations to relate the known distances (C1 to C4) to the unknown coordinates (x, y). The solution provided allows the user to derive the distances to the walls effectively. This method successfully addresses the user's research problem.
ttk
Messages
2
Reaction score
0
For a research problem, I'd like a way to find the distance of each of 4 lines perpendicular to one of 4 walls connected to a point that is within a box of known dimension. I know the distance from the center of each wall to the point of interest (C1 to C4), but I do not know the angle this line makes relative to the wall (usually it will not be perpendicular). I'm attaching an image of the problem. C1 to C4 are known, as is the dimension of the square box. What I want to know is B1 to B4. My overall goal is to understand the distance of the point of interest (which could be anywhere within the box) from the nearest wall along a perpendicular to that wall (it's closest distance from the wall).

View attachment 5915
 

Attachments

Mathematics news on Phys.org
ttk said:
For a research problem, I'd like a way to find the distance of each of 4 lines perpendicular to one of 4 walls connected to a point that is within a box of known dimension. I know the distance from the center of each wall to the point of interest (C1 to C4), but I do not know the angle this line makes relative to the wall (usually it will not be perpendicular). I'm attaching an image of the problem. C1 to C4 are known, as is the dimension of the square box. What I want to know is B1 to B4. My overall goal is to understand the distance of the point of interest (which could be anywhere within the box) from the nearest wall along a perpendicular to that wall (it's closest distance from the wall).

Hey ttk! Welcome to MHB! ;)

Let's pick the center of the square to be our origin.
And let's pick the coordinates of the point of interest to be $(x,y)$.
Oh, we already had an $x$ for the side of the square. :eek:
Well, let's discard that one, and let's pick $h$ to be half the side of the square, if you don't mind.
I just like $x$ and $y$ to be my unknowns, and use other letters for known values.

With those choices, we have the following system of equations:
\[\begin{cases}
x^2 + (h-y)^2 = C_1^2 \\
(h-x)^2 + y^2 = C_2^2 \\
x^2 + (h+y)^2 = C_3^2 \\
(h+x)^2 + y^2 = C_4^2
\end{cases}
\Rightarrow\begin{cases}
x^2 + y^2 - 2hy = C_1^2 - h^2\\
x^2 + y^2 - 2hx= C_2^2 - h^2 \\
x^2 + y^2 +2hy = C_3^2 - h^2 \\
x^2 + y^2 +2hx = C_4^2 - h^2
\end{cases}
\Rightarrow\begin{cases}
4hx= (C_4^2-h^2) - (C_2^2 - h^2) \\
4hy = (C_3^2 - h^2) - (C_1^2 - h^2) \\
\end{cases}
\Rightarrow\begin{cases}
x= \frac{C_4^2 - C_2^2}{4h} \\
y = \frac{C_3^2 - C_1^2}{4h} \\
\end{cases}
\]

Does that satisfy your needs? (Wondering)
 
You cracked it! Thanks so much. With x,y, I can easily determine the distance to the walls. Can't thank you enough. Take care,

Terry
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Back
Top