- #1
KSCphysics
- 31
- 0
find the surface area of [tex]f(x,y)=\sqrt{x^2+y^2}[/tex] above the region
[tex]R=\{(x,y):0\leq f(x,y) \leq 1\}[/tex]
well.. here's what the answer should be.. [tex]\sqrt{2} \ \theta[/tex]
1. formula for Surface area:
[tex]\int_{R} \int \sqrt{1+f_{x}(x,y)^2+f_{y}(x,y)^2} \ dA[/tex]
2. next i need to find the region:
so if [tex]r^2=x^2+y^2[/tex]
then... [tex]r=\sqrt{x^2+y^2}[/tex]
which means that our region is from
[tex]0 \leq r \leq 1 [/tex]
and we know [tex]0 \leq \theta \leq \frac{\Pi}{2} [/tex]
3. [tex]f_{x}(x,y)=\frac{x}{\sqrt{x^2+y^2}} [/tex] [tex]f_{y}(x,y)=\frac{y}{\sqrt{x^2+y^2}} [/tex]
4. [tex]\int_{0}^\frac{\Pi}{2} \int_{0}^1 \sqrt{1+(\frac{x}{\sqrt{x^2+y^2}})^2+(\frac{y}{\sqrt{x^2+y^2}})^2} \ dr \ d\theta[/tex]
so [tex]\int_{0}^\frac{\Pi}{2} \int_{0}^1 \sqrt{2} \ dr d\theta[/tex]
somehow... something doesn't work... HELP!
[tex]R=\{(x,y):0\leq f(x,y) \leq 1\}[/tex]
well.. here's what the answer should be.. [tex]\sqrt{2} \ \theta[/tex]
1. formula for Surface area:
[tex]\int_{R} \int \sqrt{1+f_{x}(x,y)^2+f_{y}(x,y)^2} \ dA[/tex]
2. next i need to find the region:
so if [tex]r^2=x^2+y^2[/tex]
then... [tex]r=\sqrt{x^2+y^2}[/tex]
which means that our region is from
[tex]0 \leq r \leq 1 [/tex]
and we know [tex]0 \leq \theta \leq \frac{\Pi}{2} [/tex]
3. [tex]f_{x}(x,y)=\frac{x}{\sqrt{x^2+y^2}} [/tex] [tex]f_{y}(x,y)=\frac{y}{\sqrt{x^2+y^2}} [/tex]
4. [tex]\int_{0}^\frac{\Pi}{2} \int_{0}^1 \sqrt{1+(\frac{x}{\sqrt{x^2+y^2}})^2+(\frac{y}{\sqrt{x^2+y^2}})^2} \ dr \ d\theta[/tex]
so [tex]\int_{0}^\frac{\Pi}{2} \int_{0}^1 \sqrt{2} \ dr d\theta[/tex]
somehow... something doesn't work... HELP!