- #1
Boltzman Oscillation
- 233
- 26
- Homework Statement
- Derive the ordinary differential equation (ODE) for the network with the capacitor voltage vC4(t) as the dependent variable, time t as the independent variable, and Eg(t) as the network excitation described by a 10V step function. Find the resistor values that will give you a damping ratio of .1.
- Relevant Equations
- The damping ratio is require to be .1
The circuit to be analyzed is shown below:
Since initial conditions are zero (from the instructions) I will use laplace transforms for the cirucit and I will use the MAME method to solve this circuit. The laplace transforms that are required will give me:
$$E_g(s) = \frac{10}{s}$$
$$ L_3 = sL_3$$
$$ C_4 = \frac{1}{sC_4}$$
again, the initial conditions are zero so i did not include them in the transforms.
Now solving the MAME (mesh analysis matrix equation), by setting the first loop as Im1 and the second loop as Im2, I get:
$$
\begin{bmatrix}
R_1+ sL_3 + \frac{1}{sC4} & -(\frac{1}{sC4} + sL_3) \\
-(\frac{1}{sC4} + sL_3) & R_2+ sL_3 + \frac{1}{sC4}
\end{bmatrix}
*
\begin{bmatrix}
I_{m1}\\
I_{m2}
\end{bmatrix}
=
\begin{bmatrix}
\frac{10}{s}\\
0
\end{bmatrix}
$$
Which is of the form:
$$Z*I = V$$
I can use Cramer's rule to solve for I_m1 and I_m2. Doing so gives me the following two formulas:
$$I_{m1} = \frac{10(R_2+ sL_3 + \frac{1}{sC4})}{s^2(L_3R_2+R_1L_3)+sR_1R_2+(\frac{R_1+R_2}{C_4})}$$
and
$$I_{m2} = \frac{10(sL_3 + \frac{1}{sC4})}{s^2(L_3R_2+R_1L_3)+sR_1R_2+(\frac{R_1+R_2}{C_4})}$$
from the circuit I can see that
$$V_{C4}(t) = \frac{I_{m1}-I_{m2}}{sC_4}$$
thus i can use my equations to solve for Vc4 as:
$$\frac{10(R_2)}{s^2(L_3R_2+R_1L_3)+sR_1R_2+(\frac{R_1+R_2}{C_4})} * \frac{1}{sC_4}$$
am i doing this right? Even if i turn this into the time domain I would have a third order differential equation in the denominator. What am I doing wrong?
Since initial conditions are zero (from the instructions) I will use laplace transforms for the cirucit and I will use the MAME method to solve this circuit. The laplace transforms that are required will give me:
$$E_g(s) = \frac{10}{s}$$
$$ L_3 = sL_3$$
$$ C_4 = \frac{1}{sC_4}$$
again, the initial conditions are zero so i did not include them in the transforms.
Now solving the MAME (mesh analysis matrix equation), by setting the first loop as Im1 and the second loop as Im2, I get:
$$
\begin{bmatrix}
R_1+ sL_3 + \frac{1}{sC4} & -(\frac{1}{sC4} + sL_3) \\
-(\frac{1}{sC4} + sL_3) & R_2+ sL_3 + \frac{1}{sC4}
\end{bmatrix}
*
\begin{bmatrix}
I_{m1}\\
I_{m2}
\end{bmatrix}
=
\begin{bmatrix}
\frac{10}{s}\\
0
\end{bmatrix}
$$
Which is of the form:
$$Z*I = V$$
I can use Cramer's rule to solve for I_m1 and I_m2. Doing so gives me the following two formulas:
$$I_{m1} = \frac{10(R_2+ sL_3 + \frac{1}{sC4})}{s^2(L_3R_2+R_1L_3)+sR_1R_2+(\frac{R_1+R_2}{C_4})}$$
and
$$I_{m2} = \frac{10(sL_3 + \frac{1}{sC4})}{s^2(L_3R_2+R_1L_3)+sR_1R_2+(\frac{R_1+R_2}{C_4})}$$
from the circuit I can see that
$$V_{C4}(t) = \frac{I_{m1}-I_{m2}}{sC_4}$$
thus i can use my equations to solve for Vc4 as:
$$\frac{10(R_2)}{s^2(L_3R_2+R_1L_3)+sR_1R_2+(\frac{R_1+R_2}{C_4})} * \frac{1}{sC_4}$$
am i doing this right? Even if i turn this into the time domain I would have a third order differential equation in the denominator. What am I doing wrong?