- #1
user1139
- 72
- 8
- Homework Statement
- The most general spherically symmetric line element is of the form ##\mathrm{d}s^2=-A(r,t)\mathrm{d}t^2+2C(r,t)\mathrm{d}t\mathrm{d}r+B(r,t)\mathrm{d}r^2+r^2(\mathrm{d}\theta^2+\sin^2{\theta}\mathrm{d}\phi^2)##.
Show that with a transformation ##t\rightarrow t+f(r,t)## for some ##f(r,t)##, the line element can be written as ##\mathrm{d}s^2=-A(r,t)\mathrm{d}t^2+B(r,t)\mathrm{d}r^2+r^2(\mathrm{d}\theta^2+\sin^2{\theta}\mathrm{d}\phi^2)##.
- Relevant Equations
- Please see above.
Using the transformation for ##t##, I obtained
$$\mathrm{d}t'=\left(1+\frac{\partial f}{\partial t}\right)\mathrm{d}t+\frac{\partial f}{\partial r}\mathrm{d}r$$.
Using this equation, I substituted it into the general line element to obtain
\begin{align*}
\mathrm{d}s^2=&-A(r,t)\left(1+\frac{\partial f}{\partial t}\right)^{-2}\mathrm{d}t'^{2}-A(r,t)\left(\frac{\partial f}{\partial r}\right)^2\left(1+\frac{\partial f}{\partial t}\right)^{-2}\mathrm{d}r^2+2A(r,t)\left(1+\frac{\partial f}{\partial t}\right)^{-2}\left(\frac{\partial f}{\partial r}\right)\mathrm{d}t'\mathrm{d}r\nonumber\\
&+2C(r,t)\left(1+\frac{\partial f}{\partial t}\right)^{-1}\mathrm{d}t'\mathrm{d}r-2C(r,t)\left(\frac{\partial f}{\partial r}\right)\left(1+\frac{\partial f}{\partial t}\right)^{-1}\mathrm{d}r^2+B(r,t)\mathrm{d}r^2+r^2(\mathrm{d}\theta^2+\sin^2{\theta}\mathrm{d}\phi^2).
\end{align*}
Is the equation that is immediately above correct? How do I proceed to show that the line element can be written as ##\mathrm{d}s^2=-A(r,t)\mathrm{d}t^2+B(r,t)\mathrm{d}r^2+r^2(\mathrm{d}\theta^2+\sin^2{\theta}\mathrm{d}\phi^2)##?
$$\mathrm{d}t'=\left(1+\frac{\partial f}{\partial t}\right)\mathrm{d}t+\frac{\partial f}{\partial r}\mathrm{d}r$$.
Using this equation, I substituted it into the general line element to obtain
\begin{align*}
\mathrm{d}s^2=&-A(r,t)\left(1+\frac{\partial f}{\partial t}\right)^{-2}\mathrm{d}t'^{2}-A(r,t)\left(\frac{\partial f}{\partial r}\right)^2\left(1+\frac{\partial f}{\partial t}\right)^{-2}\mathrm{d}r^2+2A(r,t)\left(1+\frac{\partial f}{\partial t}\right)^{-2}\left(\frac{\partial f}{\partial r}\right)\mathrm{d}t'\mathrm{d}r\nonumber\\
&+2C(r,t)\left(1+\frac{\partial f}{\partial t}\right)^{-1}\mathrm{d}t'\mathrm{d}r-2C(r,t)\left(\frac{\partial f}{\partial r}\right)\left(1+\frac{\partial f}{\partial t}\right)^{-1}\mathrm{d}r^2+B(r,t)\mathrm{d}r^2+r^2(\mathrm{d}\theta^2+\sin^2{\theta}\mathrm{d}\phi^2).
\end{align*}
Is the equation that is immediately above correct? How do I proceed to show that the line element can be written as ##\mathrm{d}s^2=-A(r,t)\mathrm{d}t^2+B(r,t)\mathrm{d}r^2+r^2(\mathrm{d}\theta^2+\sin^2{\theta}\mathrm{d}\phi^2)##?
Last edited: