- #1
yungman
- 5,755
- 292
My questions are what the book said after working out the solution that I have no issue of finding. The original question is to find E and B at a field point pointed by r due to a moving point charge pointed by w(t_r) at retard time moving at a constant velocity v.
For constant velocity:
[tex] \vec E_{(\vec r, t)} = \frac q {4\pi\epsilon_0}\frac {\eta}{(\vec{\eta}\cdot\vec u)^3} [(c^2-v^2)\vec u ] [/tex]
Where
[tex] \vec{\eta} = \vec r -\vec w(t_r), \; \vec u=c\hat{\eta}-\vec v\;,\; \vec v = \frac { d \vec w(t_r)}{dt_r}[/tex]
I have no problem finding the answer:
[tex] \vec E_{(\vec r, t)} = \frac q {4\pi\epsilon_0} \frac {1-\frac{v^2}{c^2}} {\left (1-\frac{v^2}{c^2} sin^2\theta \right )^{\frac 3 2}} \frac {\hat R}{R^2} \;\hbox { where }\; \vec R = \vec r –t\vec v [/tex]
Below are the three statements directly quoted by the book and I have no idea what they mean:
[BOOK]
1) Because of the [tex] sin^2\theta [/tex] in the denominator, the field of a fast-moving charge is flattened out like a pancake in the direction perpendicular to the motion.
2) In the forward and backward directions, E is reduced by a factor [tex] (1 - \frac {v^2}{c^2} ) [/tex] relative to the field of a charge at rest;
3) In the perpendicular direction it is enhanced by a factor [tex]\frac 1 {\sqrt { \left (1 - \frac {v^2}{c^2}\right )}} [/tex]
[END BOOK]
Also in finding B
[tex] \vec B =\frac 1 c \hat{\eta}\times \vec E = \frac 1 c \hat{\eta} \times \frac {q\left ( 1-\frac {v^2}{c^2}\right )}{4\pi\epsilon_0\left ( 1-\frac {v^2}{c^2} sin^2\theta \right )^{\frac 3 2}} \frac {\vec R}{R^3}[/tex]
In two different ways, I get different answer.
1)
[tex] \hat {\eta} \times \vec R = \frac {1}{\eta} [(\vec r -t_r \vec v)\times(c\frac{\vec{\eta}}{\eta}-t\vec v)]=\frac {1}{\eta}[-\frac {ct_r}{\eta} \vec r\times \vec v -t(\vec r \times \vec v) -\frac{ct_r}{\eta}(\vec v\times \vec r)]=-\frac {t} {\eta} (\vec r \times \vec v)[/tex]
[tex] \Rightarrow\;\vec B = \frac 1 c \frac {q\left ( 1-\frac {v^2}{c^2} \right )}{4\pi\epsilon_0\eta \left ( 1-\frac {v^2}{c^2} sin^2\theta\right )^{\frac 3 2}R^3}\;[ t (\vec v \times \vec r)] [/tex]
2)
[tex]\hat{\eta}=\frac{\vec r-t_r\vec v}{\eta}=\frac {(\vec-t\vec v)+(t-t_r)\vec v}{\eta}=\frac {\vec R}{\eta} + \frac {\vec v}{c} \Rightarrow\; \vec B = \frac 1 c \frac {q\left ( 1-\frac {v^2}{c^2} \right )}{4\pi\epsilon_0\eta \left ( 1-\frac {v^2}{c^2} sin^2\theta\right )^{\frac 3 2}R^3} \;(\vec v \times \vec r) [/tex]
Notice a difference of t between the two method? I cannot resolve this.
For constant velocity:
[tex] \vec E_{(\vec r, t)} = \frac q {4\pi\epsilon_0}\frac {\eta}{(\vec{\eta}\cdot\vec u)^3} [(c^2-v^2)\vec u ] [/tex]
Where
[tex] \vec{\eta} = \vec r -\vec w(t_r), \; \vec u=c\hat{\eta}-\vec v\;,\; \vec v = \frac { d \vec w(t_r)}{dt_r}[/tex]
I have no problem finding the answer:
[tex] \vec E_{(\vec r, t)} = \frac q {4\pi\epsilon_0} \frac {1-\frac{v^2}{c^2}} {\left (1-\frac{v^2}{c^2} sin^2\theta \right )^{\frac 3 2}} \frac {\hat R}{R^2} \;\hbox { where }\; \vec R = \vec r –t\vec v [/tex]
Below are the three statements directly quoted by the book and I have no idea what they mean:
[BOOK]
1) Because of the [tex] sin^2\theta [/tex] in the denominator, the field of a fast-moving charge is flattened out like a pancake in the direction perpendicular to the motion.
2) In the forward and backward directions, E is reduced by a factor [tex] (1 - \frac {v^2}{c^2} ) [/tex] relative to the field of a charge at rest;
3) In the perpendicular direction it is enhanced by a factor [tex]\frac 1 {\sqrt { \left (1 - \frac {v^2}{c^2}\right )}} [/tex]
[END BOOK]
Also in finding B
[tex] \vec B =\frac 1 c \hat{\eta}\times \vec E = \frac 1 c \hat{\eta} \times \frac {q\left ( 1-\frac {v^2}{c^2}\right )}{4\pi\epsilon_0\left ( 1-\frac {v^2}{c^2} sin^2\theta \right )^{\frac 3 2}} \frac {\vec R}{R^3}[/tex]
In two different ways, I get different answer.
1)
[tex] \hat {\eta} \times \vec R = \frac {1}{\eta} [(\vec r -t_r \vec v)\times(c\frac{\vec{\eta}}{\eta}-t\vec v)]=\frac {1}{\eta}[-\frac {ct_r}{\eta} \vec r\times \vec v -t(\vec r \times \vec v) -\frac{ct_r}{\eta}(\vec v\times \vec r)]=-\frac {t} {\eta} (\vec r \times \vec v)[/tex]
[tex] \Rightarrow\;\vec B = \frac 1 c \frac {q\left ( 1-\frac {v^2}{c^2} \right )}{4\pi\epsilon_0\eta \left ( 1-\frac {v^2}{c^2} sin^2\theta\right )^{\frac 3 2}R^3}\;[ t (\vec v \times \vec r)] [/tex]
2)
[tex]\hat{\eta}=\frac{\vec r-t_r\vec v}{\eta}=\frac {(\vec-t\vec v)+(t-t_r)\vec v}{\eta}=\frac {\vec R}{\eta} + \frac {\vec v}{c} \Rightarrow\; \vec B = \frac 1 c \frac {q\left ( 1-\frac {v^2}{c^2} \right )}{4\pi\epsilon_0\eta \left ( 1-\frac {v^2}{c^2} sin^2\theta\right )^{\frac 3 2}R^3} \;(\vec v \times \vec r) [/tex]
Notice a difference of t between the two method? I cannot resolve this.