- #1
- 6,223
- 31
Homework Statement
The sequence [tex]u_1,u_2,u_3,...[/tex] is such that [tex]u_1=1[/tex] and [tex]u_{n+1}=-1+{\sqrt{u_n+7}}[/tex]
a) Prove by induction that [tex]u_n<2 for all n\geq1[/tex]
b) show that if [tex]u_n=2-\epsilon[/tex], where [tex]\epsilon[/tex] is small, then [tex]u_{n+1}\approx 2-\frac{1}{6}\epsilon[/tex]
Homework Equations
The Attempt at a Solution
[tex]u_{n+1}=-1+sqrt{u_n+7}[/tex]
[tex]\Rightarrow u_n=(u_{n+1}+1)^2-7[/tex]
Assume statement is true for all [tex]k\geq1[/tex]
then [tex]u_k<2[/tex]
[tex]\Rightarrow (u_{k+1}+1)^2-7<2[/tex]
[tex] (u_{k+1}+1)^2-(3)^2<0[/tex]
[tex]((u_{k+1}+1)-3)((u_{k+1}+1)-3)<0[/tex]
[tex](u_{k+1}+1)-3>0[/tex] AND [tex](u_{k+1}+1)-3<0[/tex]
[tex]
u_{k+1}+1>3
u_{k+1}>2
[/tex]
Thus [tex]u_{n+1}>2[/tex] is true
[tex]
(u_{k+1}+1)-3<0
u_{k+1}+1<-3
u_{k+1}<-2
[/tex]
does this affect anything in my proof?
I didn't bother to substitute the values of [tex]u_1[/tex] and [tex]u_2[/tex] and so forth as i have already done it and it is so for all [tex]n\geq1[/tex]
but I do not know how to do part b)
Last edited by a moderator: