- #1
brpetrucci
- 9
- 2
Hi everyone! Hope your week is going well. I'm an ex-physics and math student, now getting my PhD in mathematical biology, and I've recently come back to the subjects because I miss them and feel like it'd be fun to get proficient in some of this again. I've been mostly working on building my way up to GR in physics since that's what I'm most interested in, but in the case of math I kinda wanted to focus on making the best use of the textbooks I already have (some of which I never touched :d) to brush up on analysis, linear algebra, and (eventually, hopefully) differential geometry. I wanted to check with y'all what you thought of my reading order here, and if you'd recommend any intermediaries if a jump between two books is too much. I'm ok buying some new books eventually, just trying to structure my study around what I already have to start.
The plan would be to start with Spivak's Calculus, then Apostol's Calculus Vol. 2. I don't know why I only have 2, but I assume past me just figured that having gone through Spivak, Apostol's volume on Linear algebra and multivariate stuff would be a more useful follow up. Then, in no particular order I wanted to go through Rudin's Principles of Mathematical Analysis, and Hoffman and Kunze's Linear Algebra. I also have Apostol's Mathematical Analysis, which I might read after baby Rudin as well, not sure if that's supposed to be a level above or the same. Finally, and I believe there's a jump here--though I'd love to be wrong--, I'd go through O'Neill's Elementary Differential Geometry. I assume I'd need to first read some topology book or something of the sort, would love to hear what you guys think. This basically exhausts my math textbooks, outside of Piskunov's Differential and Integral Calculus which I've mostly used for references up to this point, maybe I'll read it.
Again, I have no particular objective here besides just learning and having fun! I guess eventually it would be nice to have a good enough understanding of DG that I could understand the more mathematical-view texts on GR, maybe. In any case, I have no time limit and would love any recommendations. Thanks in advance!
The plan would be to start with Spivak's Calculus, then Apostol's Calculus Vol. 2. I don't know why I only have 2, but I assume past me just figured that having gone through Spivak, Apostol's volume on Linear algebra and multivariate stuff would be a more useful follow up. Then, in no particular order I wanted to go through Rudin's Principles of Mathematical Analysis, and Hoffman and Kunze's Linear Algebra. I also have Apostol's Mathematical Analysis, which I might read after baby Rudin as well, not sure if that's supposed to be a level above or the same. Finally, and I believe there's a jump here--though I'd love to be wrong--, I'd go through O'Neill's Elementary Differential Geometry. I assume I'd need to first read some topology book or something of the sort, would love to hear what you guys think. This basically exhausts my math textbooks, outside of Piskunov's Differential and Integral Calculus which I've mostly used for references up to this point, maybe I'll read it.
Again, I have no particular objective here besides just learning and having fun! I guess eventually it would be nice to have a good enough understanding of DG that I could understand the more mathematical-view texts on GR, maybe. In any case, I have no time limit and would love any recommendations. Thanks in advance!