- #1
riri
- 28
- 0
Hi!
I recently came upon this problem : the height of a right angled triangle is increasing at a rate of 5cm/min while the area is constant. How fast must the base be decreasing at the moment when the height is 5 times the base?
I drew a picture of the triangle, labelled the height (h) and base (b)... area of a triangle = 1/2bh correct?
And it also states I should use PRODUCT RULE.
Now what I'm confused about is how to proceed. I have to find \d{b}{dt} and was wondering if there's a simple way to do this? dh/dt = 5cm/min and I'm a bit confused on how to write the next part of the equation and how to solve this step by step.
Thank you! :)
I recently came upon this problem : the height of a right angled triangle is increasing at a rate of 5cm/min while the area is constant. How fast must the base be decreasing at the moment when the height is 5 times the base?
I drew a picture of the triangle, labelled the height (h) and base (b)... area of a triangle = 1/2bh correct?
And it also states I should use PRODUCT RULE.
Now what I'm confused about is how to proceed. I have to find \d{b}{dt} and was wondering if there's a simple way to do this? dh/dt = 5cm/min and I'm a bit confused on how to write the next part of the equation and how to solve this step by step.
Thank you! :)