- #1
psie
- 265
- 32
- TL;DR Summary
- I'm reading a proof on conditional probabilities and there is an identity involving conditional expectation which I'm stuck on.
Let ##(\Omega,\mathcal{F},P)## be a probability space, and let us define the conditional expectation ##{\rm E}[X\mid\mathcal{G}]## for integrable random variables ##X:\Omega\to\mathbb{R}##, i.e. ##X\in L^1(P)##, and sub-sigma-algebras ##\mathcal{G}\subseteq\mathcal{F}##.
If ##\mathcal{G}=\sigma(Y)##, then (iii) in definition 1 says that $${\rm E}[\mathbf{1}_A{\rm E}[X\mid Y]]={\rm E}[\mathbf{1}_AX],\quad \forall A\in\sigma(Y).\tag1$$
Now, in a proof I'm reading currently, there are three random variables ##U,S,T## and the following computation appears in the proof: $$\int_{T^{-1}(B)} U\,\mathrm dP={\rm E}[\mathbf{1}_B(T)U]={\rm E}[\mathbf{1}_B(T){\rm E}[U\mid S,T]].$$I simply do not comprehend the last equality, that is ##{\rm E}[\mathbf{1}_B(T)U]={\rm E}[\mathbf{1}_B(T){\rm E}[U\mid S,T]]##. How does this follow from the definitions above and the identity ##(1)##? I'm grateful for any help on this.
Definition 1: The conditional expectation ##{\rm E}[X\mid\mathcal{G}]## of ##X## given ##\mathcal{G}## is the random variable ##Z## having the following properties:
(i) ##Z## is integrable, i.e. ##Z\in L^1(P)##.
(ii) ##Z## is (##\mathcal{G},\mathcal{B}(\mathbb{R}))##-measurable.
(iii) For any ##A\in\mathcal{G}## we have $$\int_A Z\,\mathrm dP=\int_A X\,\mathrm dP.$$
Definition 2: If ##X\in L^1(P)## and ##Y:\Omega\to\mathbb{R}## is any random variable, then the conditional expectation of ##X## given ##Y## is defined as $${\rm E}[X\mid Y]:={\rm E}[X\mid\sigma(Y)],$$ where ##\sigma(Y)=\{Y^{-1}(B)\mid B\in\mathcal{B}(\mathbb{R})\}## is the sigma-algebra generated by ##Y##.
If ##\mathcal{G}=\sigma(Y)##, then (iii) in definition 1 says that $${\rm E}[\mathbf{1}_A{\rm E}[X\mid Y]]={\rm E}[\mathbf{1}_AX],\quad \forall A\in\sigma(Y).\tag1$$
Now, in a proof I'm reading currently, there are three random variables ##U,S,T## and the following computation appears in the proof: $$\int_{T^{-1}(B)} U\,\mathrm dP={\rm E}[\mathbf{1}_B(T)U]={\rm E}[\mathbf{1}_B(T){\rm E}[U\mid S,T]].$$I simply do not comprehend the last equality, that is ##{\rm E}[\mathbf{1}_B(T)U]={\rm E}[\mathbf{1}_B(T){\rm E}[U\mid S,T]]##. How does this follow from the definitions above and the identity ##(1)##? I'm grateful for any help on this.