Help understanding conditional expectation identity

In summary, the conditional expectation identity is a mathematical concept in probability theory that describes how to calculate the expected value of a random variable given certain conditions or information. It states that the conditional expectation of a random variable can be expressed in terms of another random variable, often using integrals or sums to incorporate the probability distribution. This identity is crucial for making predictions based on partial information and is widely used in statistics, finance, and various fields involving uncertainty. Understanding this identity involves grasping the concepts of expectation, conditioning, and the relationships between different random variables.
  • #1
psie
265
32
TL;DR Summary
I'm reading a proof on conditional probabilities and there is an identity involving conditional expectation which I'm stuck on.
Let ##(\Omega,\mathcal{F},P)## be a probability space, and let us define the conditional expectation ##{\rm E}[X\mid\mathcal{G}]## for integrable random variables ##X:\Omega\to\mathbb{R}##, i.e. ##X\in L^1(P)##, and sub-sigma-algebras ##\mathcal{G}\subseteq\mathcal{F}##.

Definition 1: The conditional expectation ##{\rm E}[X\mid\mathcal{G}]## of ##X## given ##\mathcal{G}## is the random variable ##Z## having the following properties:
(i) ##Z## is integrable, i.e. ##Z\in L^1(P)##.
(ii) ##Z## is (##\mathcal{G},\mathcal{B}(\mathbb{R}))##-measurable.
(iii) For any ##A\in\mathcal{G}## we have $$\int_A Z\,\mathrm dP=\int_A X\,\mathrm dP.$$

Definition 2: If ##X\in L^1(P)## and ##Y:\Omega\to\mathbb{R}## is any random variable, then the conditional expectation of ##X## given ##Y## is defined as $${\rm E}[X\mid Y]:={\rm E}[X\mid\sigma(Y)],$$ where ##\sigma(Y)=\{Y^{-1}(B)\mid B\in\mathcal{B}(\mathbb{R})\}## is the sigma-algebra generated by ##Y##.

If ##\mathcal{G}=\sigma(Y)##, then (iii) in definition 1 says that $${\rm E}[\mathbf{1}_A{\rm E}[X\mid Y]]={\rm E}[\mathbf{1}_AX],\quad \forall A\in\sigma(Y).\tag1$$

Now, in a proof I'm reading currently, there are three random variables ##U,S,T## and the following computation appears in the proof: $$\int_{T^{-1}(B)} U\,\mathrm dP={\rm E}[\mathbf{1}_B(T)U]={\rm E}[\mathbf{1}_B(T){\rm E}[U\mid S,T]].$$I simply do not comprehend the last equality, that is ##{\rm E}[\mathbf{1}_B(T)U]={\rm E}[\mathbf{1}_B(T){\rm E}[U\mid S,T]]##. How does this follow from the definitions above and the identity ##(1)##? I'm grateful for any help on this.
 
  • Like
Likes Dale
Physics news on Phys.org
  • #2
I think I understand the identity in question now. First, from Durret's book, we have

If ##X## is ##\mathcal G##-measurable and ##E|Y|,E|XY|<\infty##, then $$E[XY|\mathcal{G}]=XE[Y|\mathcal{G}].$$

Second, we need the Tower property or the law of the iterated expectation, that is ##E[Y|\mathcal{H}]= E\big[E[Y\mid \mathcal G]\mid \mathcal H\big]##, where ##\mathcal H\subset\mathcal G##.

By the latter property, we have $$E[\mathbf1_B(T)U]=E[E[\mathbf1_B(T)U\mid S,T]].$$ Now, by the theorem in Durret, ##\mathbf1_B(T)=\mathbf1_{T^{-1}(B)}## is ##\sigma(T)##-measurable, and this is a subset of ##\sigma(S,T)=\sigma(\sigma(S)\cup\sigma(T))##. So we can "pull it out", and we are left with $$E[\mathbf1_B(T)U]=E[\mathbf1_B(T)E[U\mid S,T]],$$which is the desired identity.
 

Similar threads

Replies
1
Views
807
Replies
1
Views
872
Replies
1
Views
877
Replies
5
Views
363
Replies
2
Views
2K
Replies
1
Views
662
Replies
6
Views
2K
Replies
1
Views
792
Back
Top