- #1
Snarf
- 17
- 0
I'm in a mathematical statistics class and it is spanking me. Please help.
I have two questions that will really help me understand things if I get a nice explanation.
1. A random variable Y has the following probability function p(y) = y[tex]^{2}[/tex]/15 for y = 1, 2, 3. Findthe moment generating function for Y.
What this problem requires is the integration of m(t) = E[e^ty] = [tex]\int[/tex] e[tex]^{ty}[/tex]y[tex]^{2}[/tex]/15dy integrated from 1 to 3.
I used integration by parts but succeeded in getting something very large and ugly.
The second question is along the same lines:
2. Let Y be a random variable with [tex]\mu[/tex][tex]^{'}_{k}[/tex]=[1 + 2[tex]^{k+1}[/tex] + 3[tex]^{k+1}[/tex]]/6
I need to inegrate m(t) = E[e[tex]^{ty}[/tex]] = [tex]\int[/tex][tex]e^{ty}[/tex][1 + 2[tex]^{k+1}[/tex] + 3[tex]^{k+1}[/tex]]/6 dy from 0 to infinity finding the first four terms and indicating the sum continues.
Anyone?
I have two questions that will really help me understand things if I get a nice explanation.
1. A random variable Y has the following probability function p(y) = y[tex]^{2}[/tex]/15 for y = 1, 2, 3. Findthe moment generating function for Y.
What this problem requires is the integration of m(t) = E[e^ty] = [tex]\int[/tex] e[tex]^{ty}[/tex]y[tex]^{2}[/tex]/15dy integrated from 1 to 3.
I used integration by parts but succeeded in getting something very large and ugly.
The second question is along the same lines:
2. Let Y be a random variable with [tex]\mu[/tex][tex]^{'}_{k}[/tex]=[1 + 2[tex]^{k+1}[/tex] + 3[tex]^{k+1}[/tex]]/6
I need to inegrate m(t) = E[e[tex]^{ty}[/tex]] = [tex]\int[/tex][tex]e^{ty}[/tex][1 + 2[tex]^{k+1}[/tex] + 3[tex]^{k+1}[/tex]]/6 dy from 0 to infinity finding the first four terms and indicating the sum continues.
Anyone?