- #1
etotheipi
- Homework Statement
- Given ##\omega \in \Lambda^p(M)##, ##\eta \in \Lambda^q(M)##, show that $$\begin{align*}
\mathrm{i)} \quad &d(d\omega) = 0 \quad \\
\mathrm{ii)} \quad &d(\omega \wedge \eta) = (d\omega) \wedge \eta + (-1)^p \omega \wedge d\eta \quad \\
\mathrm{iii)} \quad &d(\varphi^* \omega) = \varphi^* (d\omega)
\end{align*}
$$with ##\varphi: M \rightarrow N## a map between ##M## and ##N##.
- Relevant Equations
- N/A
I'm not very comfortable with these computations, so go easy on me! $$
\begin{align*}
[d(d\omega)]_{\mu_1 \dots \mu_{p+2}} &= (p+2) \partial_{[\mu_1} (d\omega)_{\mu_2 \dots \mu_{p+2}]} \\
&= (p+1)(p+2) \partial_{[\mu_1} \partial_{\mu_2} \omega_{\mu_3 \dots \mu_{p+2}]}
\end{align*}$$The last part should be zero, since every term cancels with a corresponding term of opposite sign with the indices on the mixed partial derivative switched (due to the anti-symmetrisation). For the next one, I tried to write both sides explicitly$$
\begin{align*}
[d(\omega \wedge \eta)]_{\mu_1 \dots \mu_{p+q+1}} &= (p+q+1) \partial_{[\mu_1} (\omega \wedge \eta)_{\mu_2 \dots \mu_{p+q+1}]} \\
&= \frac{(p+q+1)(p+q)!}{p!q!} \partial_{[\mu_1} \omega_{\mu_2 \dots \mu_{p+1}} \eta_{\mu_{p+2} \dots \mu_{p+q+1}]}
\end{align*}$$then, since ##(d\omega)_{\alpha_1 \dots \alpha_{p+1}} = (p+1) \partial_{[\alpha_1} \omega_{\alpha_2 \dots \alpha_{p+1}]}## and ##(d\eta)_{\beta_1 \dots \beta_{q+1}} = (q+1) \partial_{[\beta_1} \eta_{\beta_2 \dots \beta_{q+1}]}##, we have$$
\begin{align*}
[(d\omega) \wedge \eta]_{\mu_1 \dots \mu_{p+q+1}} &= \frac{(p+q+1)!}{(p+1)!q!} d\omega_{[\mu_1 \dots \mu_{p+1}} \eta_{\mu_{p+2} \dots \mu_{p+q+1}]} \\
&= \frac{(p+q+1)!}{p! q!} \partial_{[\mu_1} \omega_{\mu_2 \dots \mu_{p+1}} \eta_{\mu_{p+2} \dots \mu_{p+q+1}]}
\end{align*}$$and likewise$$[\omega \wedge (d\eta)]_{\mu_1 \dots \mu_{p+q+1}} = \frac{(p+q+1)!}{p!q!} \omega_{[\mu_1 \dots \mu_{p}} \partial_{\mu_{p+1}} \eta_{\mu_{p+2} \dots \mu_{p+q+1}]}$$
If we multiply the last one by ##(-1)^p## and add it to the one before, I'm not really sure how to manipulate it into the form of (ii)? Thanks for any help!
\begin{align*}
[d(d\omega)]_{\mu_1 \dots \mu_{p+2}} &= (p+2) \partial_{[\mu_1} (d\omega)_{\mu_2 \dots \mu_{p+2}]} \\
&= (p+1)(p+2) \partial_{[\mu_1} \partial_{\mu_2} \omega_{\mu_3 \dots \mu_{p+2}]}
\end{align*}$$The last part should be zero, since every term cancels with a corresponding term of opposite sign with the indices on the mixed partial derivative switched (due to the anti-symmetrisation). For the next one, I tried to write both sides explicitly$$
\begin{align*}
[d(\omega \wedge \eta)]_{\mu_1 \dots \mu_{p+q+1}} &= (p+q+1) \partial_{[\mu_1} (\omega \wedge \eta)_{\mu_2 \dots \mu_{p+q+1}]} \\
&= \frac{(p+q+1)(p+q)!}{p!q!} \partial_{[\mu_1} \omega_{\mu_2 \dots \mu_{p+1}} \eta_{\mu_{p+2} \dots \mu_{p+q+1}]}
\end{align*}$$then, since ##(d\omega)_{\alpha_1 \dots \alpha_{p+1}} = (p+1) \partial_{[\alpha_1} \omega_{\alpha_2 \dots \alpha_{p+1}]}## and ##(d\eta)_{\beta_1 \dots \beta_{q+1}} = (q+1) \partial_{[\beta_1} \eta_{\beta_2 \dots \beta_{q+1}]}##, we have$$
\begin{align*}
[(d\omega) \wedge \eta]_{\mu_1 \dots \mu_{p+q+1}} &= \frac{(p+q+1)!}{(p+1)!q!} d\omega_{[\mu_1 \dots \mu_{p+1}} \eta_{\mu_{p+2} \dots \mu_{p+q+1}]} \\
&= \frac{(p+q+1)!}{p! q!} \partial_{[\mu_1} \omega_{\mu_2 \dots \mu_{p+1}} \eta_{\mu_{p+2} \dots \mu_{p+q+1}]}
\end{align*}$$and likewise$$[\omega \wedge (d\eta)]_{\mu_1 \dots \mu_{p+q+1}} = \frac{(p+q+1)!}{p!q!} \omega_{[\mu_1 \dots \mu_{p}} \partial_{\mu_{p+1}} \eta_{\mu_{p+2} \dots \mu_{p+q+1}]}$$
If we multiply the last one by ##(-1)^p## and add it to the one before, I'm not really sure how to manipulate it into the form of (ii)? Thanks for any help!
Last edited by a moderator: