Help with a simple group theory question please

Ineedhelpimbadatphys
Messages
9
Reaction score
2
Homework Statement
the question is about topology, but i just want to know.

isn't {∅,R}∪{]a,∞[:a∈R} equal to {∅,R}
since every member of {]a,∞[:a∈R} is a real number?

or am i just completely misunderstanding unions and intersections?
Relevant Equations
above
above
 
Physics news on Phys.org
Ineedhelpimbadatphys said:
Homework Statement: the question is about topology, but i just want to know.

isn't {∅,R}∪{]a,∞[:a∈R} equal to {∅,R}
since every member of {]a,∞[:a∈R} is a real number?

or am i just completely misunderstanding unions and intersections?
Relevant Equations: above

above
Or is true. The elements of your sets are sets again. ##\emptyset\, , \,\mathbb{R}\, , \,\{r\,|\,r>a\}## are three sets, but here we consider them as the elements of ##\{\emptyset\, , \,\mathbb{R}\}## and ##\{(a,\infty )\}##. This makes the union a set with three elements, ##\emptyset\, , \,\mathbb{R}\, , \,\{r\,|\,r>a\}##.
 
  • Like
Likes topsquark and Ineedhelpimbadatphys
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...

Similar threads

Replies
24
Views
5K
Replies
1
Views
2K
Replies
2
Views
1K
Replies
2
Views
966
Replies
1
Views
2K
Replies
17
Views
8K
Back
Top