- #1
Stephen88
- 61
- 0
Homework Statement
Suppose that f is holomorphic in an open disc U and that Re(f) is
constant in U. I have to show that f must be constant in U. Also what is the essential
property of the disc U that it used here? Give an example of an open
set U for which the conclusion fails.
Homework Equations
Cauchy–Riemann equations.
The Attempt at a Solution
Let f=u+vi where u is a constant.Since f is holomorphic by the Cauchy–Riemann equations->
u_x=v_y and u_y=-v_x but since u is a constant u_x=u_y=0 => 0=v_y =-v_x...therefore f is constant.
The disc U has to be open,as in:U(a,r)={z:|z-a|<r}.
Is this correct?What should I do for the last part?
Thank you