- #1
HNB
- 5
- 0
Hello
I am trying to validate my model by comparing a simple axisymetric 2D
impacting flow of air on a surface.
The geometry is simple: a cylindrical (diameter d=26.5e-3[m]) jet of air
(debit Speed Ud=13.46[m/s]) is impacting a surface at distance H=0.2833[m].
Flow temp is Tj=20°C Wall temp is Tp=30°C
The input flow profile is either
- a uniform flow with speed Ud and standard length scales It=0.05 and
Lt=0.01
- an established flow profile Ue, ke, epe
- a non-established flow profile Ueb, keb, epeb
The model is very capricious, I'm on it since 2 monthes and it seems to
converge quite rarely...
1) First, I tried to get the turbulent low-Re flow physics to work. The
first file shows my first approach, with a thin wall at the side of the
jet. In that case, the model converge to a solution where the flow in the
dead zone is homogenous, and the shape of the turbulent viscosity seems
correct. But if I try to refine the mesh, then it doesn't converge anymore,
and the 'thin wall' solution is not really practical either.
2) The second file shows a model which converges to a solution where on
can see a (toric) rotation structure in the flow of the dead zone. As a
result, the shape of the turbulent viscosity looks quite bad. Here the mesh
is quite dense, and the model does not converge anymore if I try to enlarge
it in the zones that aren't that interesting. You will see a lot of unused
meshes and functions that come from many tries I made to make this damn
*thing* converge. Oftentimes, the rotation structure goes mad on itself and
creates a wirlpool with growing turbulent energy that makes the model
diverge.
3) Based on that 2nd model, I tried a multiphysics model adding a heat
transfer physics (ht+spf) or using non-isothermal Low-Re turbulent flow
(nitf). Whatever I try (mesh, BC, etc.), there is no convergence.
Please could you help me to understand:
- what makes my first model converge only with large mesh and diverge if
I refine the mesh?
- where do those rotational structures come from? Are they realistic
physics, or artefacts? Maybe the incoming flow from the outputs BC adds
turbulent energy to the system? But changing BC outputs to open frontiers
and specifying k=0 and ep=0 does not seem to help.
- Is there anything wrong in my model (in Discretization or Stabilization
parmeters for instance)
- And finally, are my solver configuration parameters correct?
Thanks a lot in advance!
(All parameters are taken from: "Etude comparative de modeles à bas
nombre de Reynolds dans la prédiction d'un écoulement à point de
stagnation" (in French) R. Hadef, B. Leduc. 5, 2002, Int. Comm. Heat Mass
Transfer, Vol. 29, pp. 683-695.)
I am trying to validate my model by comparing a simple axisymetric 2D
impacting flow of air on a surface.
The geometry is simple: a cylindrical (diameter d=26.5e-3[m]) jet of air
(debit Speed Ud=13.46[m/s]) is impacting a surface at distance H=0.2833[m].
Flow temp is Tj=20°C Wall temp is Tp=30°C
The input flow profile is either
- a uniform flow with speed Ud and standard length scales It=0.05 and
Lt=0.01
- an established flow profile Ue, ke, epe
- a non-established flow profile Ueb, keb, epeb
The model is very capricious, I'm on it since 2 monthes and it seems to
converge quite rarely...
1) First, I tried to get the turbulent low-Re flow physics to work. The
first file shows my first approach, with a thin wall at the side of the
jet. In that case, the model converge to a solution where the flow in the
dead zone is homogenous, and the shape of the turbulent viscosity seems
correct. But if I try to refine the mesh, then it doesn't converge anymore,
and the 'thin wall' solution is not really practical either.
2) The second file shows a model which converges to a solution where on
can see a (toric) rotation structure in the flow of the dead zone. As a
result, the shape of the turbulent viscosity looks quite bad. Here the mesh
is quite dense, and the model does not converge anymore if I try to enlarge
it in the zones that aren't that interesting. You will see a lot of unused
meshes and functions that come from many tries I made to make this damn
*thing* converge. Oftentimes, the rotation structure goes mad on itself and
creates a wirlpool with growing turbulent energy that makes the model
diverge.
3) Based on that 2nd model, I tried a multiphysics model adding a heat
transfer physics (ht+spf) or using non-isothermal Low-Re turbulent flow
(nitf). Whatever I try (mesh, BC, etc.), there is no convergence.
Please could you help me to understand:
- what makes my first model converge only with large mesh and diverge if
I refine the mesh?
- where do those rotational structures come from? Are they realistic
physics, or artefacts? Maybe the incoming flow from the outputs BC adds
turbulent energy to the system? But changing BC outputs to open frontiers
and specifying k=0 and ep=0 does not seem to help.
- Is there anything wrong in my model (in Discretization or Stabilization
parmeters for instance)
- And finally, are my solver configuration parameters correct?
Thanks a lot in advance!
(All parameters are taken from: "Etude comparative de modeles à bas
nombre de Reynolds dans la prédiction d'un écoulement à point de
stagnation" (in French) R. Hadef, B. Leduc. 5, 2002, Int. Comm. Heat Mass
Transfer, Vol. 29, pp. 683-695.)