- #1
Hey there
- 5
- 0
A hemispherical bowl of radius a has its axis vertical and is full of water. At time t=0 water starts running out of a small hole in the bottom of the bowl so that the depth of water in the bowl at t is x. The rate at which the volume of water is decreasing is proportional to x. Given that the volume of water in the bowl when the depth is x is [tex]\pi(ax^2-\frac{1}{3}x^3)[/tex] show that there is a positive constant k such that
[tex]\pi(2ax-x^2)\dfrac{dx}{dt}=-kx[/tex]
My method
[tex]-\dfrac{dV}{dt}\propto x[/tex]
[tex]\dfrac{dV}{dt}=-kx[/tex]
[tex]\dfrac{dV}{dt}=\dfrac{dV}{dx} \dfrac{dx}{dt}[/tex]
[tex]V=\pi(ax^2-\frac{1}{3}x^3)[/tex]
[tex]\dfrac{dV}{dx}=\pi(2ax-x^2)[/tex]
[tex]\pi(2ax-x^2)\dfrac{dx}{dt}=-kx[/tex]
(ii) Given that the bowl is empty after a time T, show that
[tex]k=\dfrac{3 \pi a^2}{2T}[/tex]
My method (I'm not sure how to answer this part).
[tex]\pi(2ax-x^2)\dfrac{dx}{dt}=-kx[/tex]
[tex]\displaystyle \int (2\pi a-\pi x )dx=\displaystyle \int-k dt[/tex]
[tex]2\pi ax-\frac{\pi x^2}{2}=-kt + C[/tex]
x=0 when t=T
I'm not sure how to go about showing [tex]k=\dfrac{3 \pi a^2}{2T}[/tex]with the information in the question.
Can you help me?
Thanks.
[tex]\pi(2ax-x^2)\dfrac{dx}{dt}=-kx[/tex]
My method
[tex]-\dfrac{dV}{dt}\propto x[/tex]
[tex]\dfrac{dV}{dt}=-kx[/tex]
[tex]\dfrac{dV}{dt}=\dfrac{dV}{dx} \dfrac{dx}{dt}[/tex]
[tex]V=\pi(ax^2-\frac{1}{3}x^3)[/tex]
[tex]\dfrac{dV}{dx}=\pi(2ax-x^2)[/tex]
[tex]\pi(2ax-x^2)\dfrac{dx}{dt}=-kx[/tex]
(ii) Given that the bowl is empty after a time T, show that
[tex]k=\dfrac{3 \pi a^2}{2T}[/tex]
My method (I'm not sure how to answer this part).
[tex]\pi(2ax-x^2)\dfrac{dx}{dt}=-kx[/tex]
[tex]\displaystyle \int (2\pi a-\pi x )dx=\displaystyle \int-k dt[/tex]
[tex]2\pi ax-\frac{\pi x^2}{2}=-kt + C[/tex]
x=0 when t=T
I'm not sure how to go about showing [tex]k=\dfrac{3 \pi a^2}{2T}[/tex]with the information in the question.
Can you help me?
Thanks.
Last edited: