- #1
programador
- 2
- 0
I want to make a video game about snipers and I would like it to have proper bullet physics, not something very accurate, but with "credible" bullet physics. So I need to implement a simple trajectory solver.
I thought of taking into account just the gravity and turbulent air drag. The equations for the air drag according to Wikipedia are:
F = 1/2*ρ*v²*Cd*A, where Cd is the drag coefficient (0.47 for a sphere), so given a Cd value (or function of the velocity) I can already estimate the trajectory.
On the internet, these Cd values for bullets are not available, one can find just the "ballistic coefficients" --BC-- of some bullets if we search a bit. The thing is that I need a standardized formula to obtain the Cd values to determine the actual trajectories, most websites explain these concepts in a non "scientific way" and rather suggest to use some free tools to get the bullet drops. On wikipedia I find the formulas to be very ambiguous for what seem to be several BC definitions (BC-physics, BC-projectile and BC-smallarms).
What I understand so far is that the drag coefficient varies with the Mach number (in this case v/340 in the SI units) and bullet manufacturers give a BC value using the G-model as the reference (how? what is the formula linking both things). I was lucky enough to find the G1 drag coefficient table that is mentioned everywhere but not shown. What I need now is how to use this table, the given BCs values and of course the mass and velocities to estimate a bullet's trajectory.
I thought of taking into account just the gravity and turbulent air drag. The equations for the air drag according to Wikipedia are:
F = 1/2*ρ*v²*Cd*A, where Cd is the drag coefficient (0.47 for a sphere), so given a Cd value (or function of the velocity) I can already estimate the trajectory.
On the internet, these Cd values for bullets are not available, one can find just the "ballistic coefficients" --BC-- of some bullets if we search a bit. The thing is that I need a standardized formula to obtain the Cd values to determine the actual trajectories, most websites explain these concepts in a non "scientific way" and rather suggest to use some free tools to get the bullet drops. On wikipedia I find the formulas to be very ambiguous for what seem to be several BC definitions (BC-physics, BC-projectile and BC-smallarms).
What I understand so far is that the drag coefficient varies with the Mach number (in this case v/340 in the SI units) and bullet manufacturers give a BC value using the G-model as the reference (how? what is the formula linking both things). I was lucky enough to find the G1 drag coefficient table that is mentioned everywhere but not shown. What I need now is how to use this table, the given BCs values and of course the mass and velocities to estimate a bullet's trajectory.