- #1
ognik
- 643
- 2
Find $ F=\frac{\hbar}{2\pi i} \int_{-\infty}^{\infty} \frac{e^{-i \omega t}}{E_0-\frac{i\Gamma}{2} -\hbar \omega} \,d\omega $ using contour integration. I have a couple questions I'd like some help with please...
Taking out the $\hbar$ in the denominator, which cancels with the $\hbar$ outside the integral, the denominator becomes $(a-\omega)$ where $a=\frac{1}{\hbar}(E_0-\frac{i\Gamma}{2}) $
Then $F = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{e^{-i \omega t}}{a-\omega} \,d\omega $ with $f(\omega) = \frac{e^{-i \omega t}}{a-\omega}=\frac{cos \omega t}{a-\omega}-i\frac{Sin \omega t}{a-\omega} $
Q1: so if $f(\omega)$ is analytic, a is a simple pole and I can use residues, but I'm not sure how to prove $f(\omega)$ is analytic, ie. how to write $\omega$ in terms of x and y, so I can use the Cauchy Riemann conditions?
Assuming analytic, I can use Cauchy's residue theorem (with a simple pole): $ \oint f(\omega) d\omega=2\pi i \: res(f, a)$, where $res(f, a)=\lim_{{\omega }\to{a}} (\omega - a)f(\omega) = e^{-iat}$
$ \therefore F= \frac{\hbar}{2\pi i} \int_{-\infty}^{\infty} \frac{e^{-i \omega t}}{E_0-\frac{i\Gamma}{2} -\hbar \omega} \,d\omega = e^{-it \left[ \frac{1}{\hbar}(E_0-\frac{i\Gamma}{2}) \right] }$ $= {e}^\left[ {\frac{-iE_{0 }t}{\hbar}} \right] {e}^\left[ {\frac{-t \Gamma}{2\hbar}}\right] $
but Q2: I am not sure about the contour. I assumed a semi-circle, but am not sure where the pole is? $f(\omega)$ looks like 4th quadrant? I also need to consider t>0 and t<0 ...
Q3: I think the contour would be $ \oint_C = \lim_{{R}\to{\infty}}\int_{-R}^{R} +\int_{2\pi}^{\pi} $, but for this function I have no idea how to show $\int_{2\pi}^{\pi} = 0$
Taking out the $\hbar$ in the denominator, which cancels with the $\hbar$ outside the integral, the denominator becomes $(a-\omega)$ where $a=\frac{1}{\hbar}(E_0-\frac{i\Gamma}{2}) $
Then $F = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{e^{-i \omega t}}{a-\omega} \,d\omega $ with $f(\omega) = \frac{e^{-i \omega t}}{a-\omega}=\frac{cos \omega t}{a-\omega}-i\frac{Sin \omega t}{a-\omega} $
Q1: so if $f(\omega)$ is analytic, a is a simple pole and I can use residues, but I'm not sure how to prove $f(\omega)$ is analytic, ie. how to write $\omega$ in terms of x and y, so I can use the Cauchy Riemann conditions?
Assuming analytic, I can use Cauchy's residue theorem (with a simple pole): $ \oint f(\omega) d\omega=2\pi i \: res(f, a)$, where $res(f, a)=\lim_{{\omega }\to{a}} (\omega - a)f(\omega) = e^{-iat}$
$ \therefore F= \frac{\hbar}{2\pi i} \int_{-\infty}^{\infty} \frac{e^{-i \omega t}}{E_0-\frac{i\Gamma}{2} -\hbar \omega} \,d\omega = e^{-it \left[ \frac{1}{\hbar}(E_0-\frac{i\Gamma}{2}) \right] }$ $= {e}^\left[ {\frac{-iE_{0 }t}{\hbar}} \right] {e}^\left[ {\frac{-t \Gamma}{2\hbar}}\right] $
but Q2: I am not sure about the contour. I assumed a semi-circle, but am not sure where the pole is? $f(\omega)$ looks like 4th quadrant? I also need to consider t>0 and t<0 ...
Q3: I think the contour would be $ \oint_C = \lim_{{R}\to{\infty}}\int_{-R}^{R} +\int_{2\pi}^{\pi} $, but for this function I have no idea how to show $\int_{2\pi}^{\pi} = 0$
Last edited: