- #1
IHateFactorial
- 17
- 0
So, there's this problem:
\(\displaystyle A = \frac{1}{6}((\log_{2}\left({3})\right)^3 - (\log_{2}\left({6})\right)^3 - (\log_{2}\left({12})\right)^3 - (\log_{2}\left({24})\right)^3)\)
Find \(\displaystyle 2^A\)
What I've figured out is that all the logs factorize to 3 + 2 to some power of n.
\(\displaystyle \log_{2}\left({3}\right)=\log_{2}\left({3\cdot2^0}\right)\)
\(\displaystyle \log_{2}\left({6}\right)=\log_{2}\left({3\cdot2^1}\right)\)
\(\displaystyle \log_{2}\left({12}\right)=\log_{2}\left({3\cdot2^2}\right)\)
\(\displaystyle \log_{2}\left({24}\right)=\log_{2}\left({3\cdot2^3}\right)\)
Solving THAT gives me:
\(\displaystyle A = \frac{1}{6}((\log_{2}\left({3})\right)^3 - (\log_{2}\left({3})+1\right)^3 - (\log_{2}\left({3})+2\right)^3 - (\log_{2}\left({3})+3\right)^3)\)
\(\displaystyle A = \frac{1}{6}(-2(\log_{2}\left({3})\right)^3 - 6(\log_{2}\left({3})\right)^2 - 14(\log_{2}\left({3})\right)-36\)
\(\displaystyle A = \frac{-1}{3}(\log_{2}\left({3})\right)^3 - (\log_{2}\left({3})\right)^2 - \frac{7}{3}(\log_{2}\left({3})\right)-6\)
And... Now? I believe I screwed up SOMEWHERE aloing that line... And I'm completely stuck as to how to go on, any ideas?
\(\displaystyle A = \frac{1}{6}((\log_{2}\left({3})\right)^3 - (\log_{2}\left({6})\right)^3 - (\log_{2}\left({12})\right)^3 - (\log_{2}\left({24})\right)^3)\)
Find \(\displaystyle 2^A\)
What I've figured out is that all the logs factorize to 3 + 2 to some power of n.
\(\displaystyle \log_{2}\left({3}\right)=\log_{2}\left({3\cdot2^0}\right)\)
\(\displaystyle \log_{2}\left({6}\right)=\log_{2}\left({3\cdot2^1}\right)\)
\(\displaystyle \log_{2}\left({12}\right)=\log_{2}\left({3\cdot2^2}\right)\)
\(\displaystyle \log_{2}\left({24}\right)=\log_{2}\left({3\cdot2^3}\right)\)
Solving THAT gives me:
\(\displaystyle A = \frac{1}{6}((\log_{2}\left({3})\right)^3 - (\log_{2}\left({3})+1\right)^3 - (\log_{2}\left({3})+2\right)^3 - (\log_{2}\left({3})+3\right)^3)\)
\(\displaystyle A = \frac{1}{6}(-2(\log_{2}\left({3})\right)^3 - 6(\log_{2}\left({3})\right)^2 - 14(\log_{2}\left({3})\right)-36\)
\(\displaystyle A = \frac{-1}{3}(\log_{2}\left({3})\right)^3 - (\log_{2}\left({3})\right)^2 - \frac{7}{3}(\log_{2}\left({3})\right)-6\)
And... Now? I believe I screwed up SOMEWHERE aloing that line... And I'm completely stuck as to how to go on, any ideas?