- #1
agapito
- 49
- 0
Consider the following proof from Copi's "Symbolic Logic", p. 109:
1. (∃x) ¬Fx Assumption
2. ¬Fy Assumption
3. (∀x) Fx Assumption
4. Fy 3, UI
5. (∀x) Fx ⇒ Fy 3-4, CP
6. ¬(∀x) Fx 5,2 MT
7. ¬(∀x) Fx 1,2-6, EI
8. (∃x) ¬Fx ⇒ ¬(∀x) Fx 1-7, CP
9. (∀x) Fx ⇒ ¬(∃x) ¬Fx 8, Trans, DN
I cannot understand how 7.- is established, everything else is clear. Can someone explain how 1,2-6, EI results in 7. ?
1. (∃x) ¬Fx Assumption
2. ¬Fy Assumption
3. (∀x) Fx Assumption
4. Fy 3, UI
5. (∀x) Fx ⇒ Fy 3-4, CP
6. ¬(∀x) Fx 5,2 MT
7. ¬(∀x) Fx 1,2-6, EI
8. (∃x) ¬Fx ⇒ ¬(∀x) Fx 1-7, CP
9. (∀x) Fx ⇒ ¬(∃x) ¬Fx 8, Trans, DN
I cannot understand how 7.- is established, everything else is clear. Can someone explain how 1,2-6, EI results in 7. ?