- #1
Mathman23
- 254
- 0
If E is a non empty set and[tex] (B_n)_{n \geq 1}[/tex] are elements in the set [tex]2^E[/tex].
I then need help showing the following:
[tex]lim_n\, sup\, B_n\, =\, lim_n\, inf\, B_n\, =\, \bigcup_{n\, =\, 1} ^{\infty}\, B_n[/tex]
if and only if [tex]B_n\, \subseteq\, B_{n+1}[/tex], for all [tex] n\, \geq\, 1[/tex],
Also I need to show
[tex]lim_n\, sup\, B_n\, =\, lim_n\, inf\, B_n\, =\, \bigcap_{n=1} ^{\infty} B_n[/tex]
if and only if [tex]B_n\, \supseteq\, B_{n+1}[/tex], for all [tex]n\, \geq\, 1[/tex]
I know that for every sequence [tex](a_n)_{n\, \geq\, 1}[/tex] of elements in the set [tex]- \infty\ \union\ \mathbb{R}\ \union\ \infty[/tex].
[tex]lim_n\, sup\, a_n\, =\, inf(M_n|\, n\, \geq\, 1)[/tex], where [tex]M_n\, :=\, sup(a_k|\, k\, \geq\, n},\, n\, \geq\, 1[/tex].
[tex]lim_n\, inf\, a_n\, =\, inf(m_n|\, n\, \geq\, 1)[/tex], where [tex]m_n\, :=\, sup(a_k|\, k\, \geq\, n},\, n\, \geq\, 1[/tex].
But could somebody please give me a hint or an idear on how to use this fact to show the original task?
Sincerely Fred
I then need help showing the following:
[tex]lim_n\, sup\, B_n\, =\, lim_n\, inf\, B_n\, =\, \bigcup_{n\, =\, 1} ^{\infty}\, B_n[/tex]
if and only if [tex]B_n\, \subseteq\, B_{n+1}[/tex], for all [tex] n\, \geq\, 1[/tex],
Also I need to show
[tex]lim_n\, sup\, B_n\, =\, lim_n\, inf\, B_n\, =\, \bigcap_{n=1} ^{\infty} B_n[/tex]
if and only if [tex]B_n\, \supseteq\, B_{n+1}[/tex], for all [tex]n\, \geq\, 1[/tex]
I know that for every sequence [tex](a_n)_{n\, \geq\, 1}[/tex] of elements in the set [tex]- \infty\ \union\ \mathbb{R}\ \union\ \infty[/tex].
[tex]lim_n\, sup\, a_n\, =\, inf(M_n|\, n\, \geq\, 1)[/tex], where [tex]M_n\, :=\, sup(a_k|\, k\, \geq\, n},\, n\, \geq\, 1[/tex].
[tex]lim_n\, inf\, a_n\, =\, inf(m_n|\, n\, \geq\, 1)[/tex], where [tex]m_n\, :=\, sup(a_k|\, k\, \geq\, n},\, n\, \geq\, 1[/tex].
But could somebody please give me a hint or an idear on how to use this fact to show the original task?
Sincerely Fred
Last edited: