- #1
AotrsCommander
- 74
- 4
I wonder if I might pick the brains of the forum's experts?
I am embarking on creating a new gaming campaign world, something I've wanted to do for years but never quite manged: an entirely alien world (i.e. not populated by humans or the like), yet with the same sort of technology as you'd get in "typical" fantasy (with maybe a few sci-fi elements thrown in.) My basic idea, though, is sufficiently ambitious as to require so considerable thought into the orbital mechanics of system - and I am the sort of pedant who can't just hand-wave away stuff because it's cool. So I am trying to work out the basic orbital mechanics to at least a reasonable level of plausibility. (So that it at least may be said "he at least tried to do the research!") My intention is to try and start out with as reasonable an approximation as I can manage before having to put in too much "a wizard/exotic material (etc) did it" handwaving. I have broached the topic in my usual forum haunts (which for a kick-off gave me some ideas of the sort of things I needed to read up on, but wikipedia only takes one so far), but I thought it might be worth finding some additional knowledgeable minds to talk to. (I am not an astrophysist, though I do have some engineering training, so I'm not completely clueless mathmatically, just so we know where I stand!)
The high-end concept for the world was "the evenstar" a world of perpetual evening (or at least
lit like it it was perpetual twilight) that every so often would be plunged into true night.
There would thus be a (great?) number of fallen civilisations that went extinct during previous
incidents, but that the natural ecology of the planet would be "used" to it. (I'm drawing partial
inspiration from what I think was a Doctor Who episode (Pertwee or Tom Baker era, I hazard) where basically the planet's life - including the people - mutated into new forms in some period because of the planet's rotation or something.) Anyway, the idea was that there would be this perodic disaster that knobbled the people without setting the planet's ecology back like a true mass extinction would.
While one way to do this would have been just to do a very long day/night cycle, I decided that was too "obvious" from the perspective of the natives on the planet (and also, you'd have serious climate issues during the "nigh" periods.) I wanted the event to be a bit more mysterious than that. I thus settled on the idea of using a tide-locked planet (or the terminous region anyway) that would give you the "evening"-ish bit, but that then required finding some way of making the it "night." After bouncing ideas around, someone finally suggested used a modified RCB type- star (e.g. R Coronae Borealis) where the luminousity dims every so often.
Currently, my working premise is thus:
A planet tide-locked to a red dwarf star (and moderately distant from it), which orbits an RCB
variable star. Most of the light (and presumably, heat) comes from the RCB star, except during
periods when the luminosity dims. The red dwarf keeps the planet's heat ticking over, as if were,
during the occlusion periods (like putting the oven on to keep something warm), provides some dim light. (My assupmtion is it's going to be a bit like Gliese 667C and 667Cc in the there's less light, but equal or more infrared.) The RCB star is slightly unusual by even RCB standards, having a long burn, with extended periods between its dark periods that are about twos orders of magnitude longer than "usual". I will assume, fo the sake or argument, that the RCB results from, as theoried as possible, the collision of two white dwarf stars, previously a stellar binary. I nominally postulate that perhaps a greater distance from the red dwarf (by habitability standards, which is really, really close!) might reduce some of the problems caused by early flaring, though by this point in the system's life-cycle, you might expect it to have past that stage anyway. (And also perhaps reduce some of the visible light for aethetic effect.)
Drawing from Aurelia, the planet speculated upon in the TV series Alien Planet, I'm postulating the
sunward side is covered by a continunous rainstorm, and the dark side is kept from freezing as
suggested in my reading by the air currents.
Purely because during my wiki reading around the subjects I happened across he artist's impression of Gliese 667 Cc on wikipedia, I am going to assume the RCB star/ companion star are also part of a multistar system that contains two other binary stars in the distance. (Essentially, at one point it would have been a system with two pairs of binary stars, one pair of which had a companion red dwarf star.)
A kind gentleman on my regular rolplaying forum was good enough to do some scratch calculations for me as a starter for ten, which I shall include as posted.
First thing that occurs in that is that if the dwarf star is not itself tide-locked to the RCB star, there will presumably be a period when the primary is set (when the planet is between the two stars) and you might hard-pressed to tell the difference between that "night" and the one caused by the dimming of the primary. (Though that effect might be reduced in the orbital plane of the dwarf/planet system is "below" the level of the orbital plane of the dwarf/RCB star, at least on part of the planet...?) Yes? No?
Ideally, I would like to add some volcanisity, which as the gentleman suggested would require a gas giant in the "vicinity?" If is was a reflective gas giant, might this also go some way to meaning that the orbital period of the secondary around the RCB star is not as dark as the periods when the primary's light dims?
I would also like to include at least one moon. I am thinking of a small, irregular-shaped moon (presumably much closer than Luna and dramatically smaller, more sort of Phobos or even smaller). I am uncertain as to whether this would have to be tide-locked, or whether it could be in orbit. (I do like the image of a rough blocky moon seen even in the "day." Blame Stewart Cowley's TTA books for burning those sort of images into my mind at an impressionable age...!)
I am also toying with the idea that the planet should not be quite tide-locked, but has a very slow day/night cycle (i.e. thousand plus years), which presumably would also have some effect on the volcanicity (as well as providing for come ancient civilisations to have moved into the dark side.)
My next problem is going to be time measurement. Obviously, with no day/night cycle, there's not
going to be a "day" but you sort of need a unit of time of about that long. There's not a "year" either, strictly speaking, so determining where you'd start working time from is an interesting question. I also am fairly sure there would be no seasons, either, at least save very long-term.
I am considering "waning:" the period of time in which the primary RCB appears to rise and set. So, while not exactly a "night" because of the secondary, there would at least be (In the figures above, that would be 178 hours. If I cheat a bit and call it 180, you could have a
"waning" being a week of six thirty-hour segments). (I am sort of assuming that given the inevitable slight eccentricitys of orbital systems, that the secondary may past close to, but not necessarily eclipse the primary during it's rotation, at least not on a regular basis.) Depending on whether or not you could have an orbiting moon (or whether it'd have to be tide-locked), that period might be able to be worked in as maybe something to do with "day" or "year" or something. (I am guessing that the apparent orbital period of the distant binaries would be very long, thousands of years possibly.)
Suggestions and observations would be greatly welcomed on any and all of these points - and also any other suggestions or ideas these environmental structures might have on the life that would emerge (I've not quite got that far yet, since I wanted to start at the very basics first!)
I am embarking on creating a new gaming campaign world, something I've wanted to do for years but never quite manged: an entirely alien world (i.e. not populated by humans or the like), yet with the same sort of technology as you'd get in "typical" fantasy (with maybe a few sci-fi elements thrown in.) My basic idea, though, is sufficiently ambitious as to require so considerable thought into the orbital mechanics of system - and I am the sort of pedant who can't just hand-wave away stuff because it's cool. So I am trying to work out the basic orbital mechanics to at least a reasonable level of plausibility. (So that it at least may be said "he at least tried to do the research!") My intention is to try and start out with as reasonable an approximation as I can manage before having to put in too much "a wizard/exotic material (etc) did it" handwaving. I have broached the topic in my usual forum haunts (which for a kick-off gave me some ideas of the sort of things I needed to read up on, but wikipedia only takes one so far), but I thought it might be worth finding some additional knowledgeable minds to talk to. (I am not an astrophysist, though I do have some engineering training, so I'm not completely clueless mathmatically, just so we know where I stand!)
The high-end concept for the world was "the evenstar" a world of perpetual evening (or at least
lit like it it was perpetual twilight) that every so often would be plunged into true night.
There would thus be a (great?) number of fallen civilisations that went extinct during previous
incidents, but that the natural ecology of the planet would be "used" to it. (I'm drawing partial
inspiration from what I think was a Doctor Who episode (Pertwee or Tom Baker era, I hazard) where basically the planet's life - including the people - mutated into new forms in some period because of the planet's rotation or something.) Anyway, the idea was that there would be this perodic disaster that knobbled the people without setting the planet's ecology back like a true mass extinction would.
While one way to do this would have been just to do a very long day/night cycle, I decided that was too "obvious" from the perspective of the natives on the planet (and also, you'd have serious climate issues during the "nigh" periods.) I wanted the event to be a bit more mysterious than that. I thus settled on the idea of using a tide-locked planet (or the terminous region anyway) that would give you the "evening"-ish bit, but that then required finding some way of making the it "night." After bouncing ideas around, someone finally suggested used a modified RCB type- star (e.g. R Coronae Borealis) where the luminousity dims every so often.
Currently, my working premise is thus:
A planet tide-locked to a red dwarf star (and moderately distant from it), which orbits an RCB
variable star. Most of the light (and presumably, heat) comes from the RCB star, except during
periods when the luminosity dims. The red dwarf keeps the planet's heat ticking over, as if were,
during the occlusion periods (like putting the oven on to keep something warm), provides some dim light. (My assupmtion is it's going to be a bit like Gliese 667C and 667Cc in the there's less light, but equal or more infrared.) The RCB star is slightly unusual by even RCB standards, having a long burn, with extended periods between its dark periods that are about twos orders of magnitude longer than "usual". I will assume, fo the sake or argument, that the RCB results from, as theoried as possible, the collision of two white dwarf stars, previously a stellar binary. I nominally postulate that perhaps a greater distance from the red dwarf (by habitability standards, which is really, really close!) might reduce some of the problems caused by early flaring, though by this point in the system's life-cycle, you might expect it to have past that stage anyway. (And also perhaps reduce some of the visible light for aethetic effect.)
Drawing from Aurelia, the planet speculated upon in the TV series Alien Planet, I'm postulating the
sunward side is covered by a continunous rainstorm, and the dark side is kept from freezing as
suggested in my reading by the air currents.
Purely because during my wiki reading around the subjects I happened across he artist's impression of Gliese 667 Cc on wikipedia, I am going to assume the RCB star/ companion star are also part of a multistar system that contains two other binary stars in the distance. (Essentially, at one point it would have been a system with two pairs of binary stars, one pair of which had a companion red dwarf star.)
A kind gentleman on my regular rolplaying forum was good enough to do some scratch calculations for me as a starter for ten, which I shall include as posted.
Anyway, here's an attempt at some physical properties for this system. Mass, luminosity, and radius are in multiples of the values for the Sun; distances are in AU. I've heavily based the
primary star on R Coronae Borealis, aside from the mean time between dimming events.
Primary: R Coronae Borealis variable star
Spectral type: G supergiant
Mass: 0.8
Luminosity: 20,000
Radius: 140
Drops in visual luminosity by a factor of ~1600 at irregular intervals, typically several centuries
apart (~40% of luminosity is in visual spectrum).
Secondary: Red dwarf star
Spectral type: M6 dwarf
Mass: 0.1
Luminosity: 0.0009
Radius: 0.15
Orbits Primary at ~270 AU (period ~5000 years)
Planet
Orbits Secondary at ~0.0345 AU (period ~178 hours)
Ice caps from ~90 to 140 degrees west of substellar point, at +-45 degrees of latitude.
Water flows form the ice caps, evaporates as it travels to the day side.
Secondary delivers about 1000 W/m2 to Planet, while Primary delivers about 370 W/m2 (for comparison, the Sun delivers ~ 1366 W/m2, so the combined total is roughly the same).
Primary appears to rise and set every 7 1/2 days due to the rotation of Planet.
Primary has an angular diameter of about 1/4 of a degree as seen from Planet (about half the angular diameter of the Sun or Moon as seen from Earth), while Secondary has an angular diameter of about 4 degrees.
Realistically, Secondary's orbit would be eccentric, so there would also be some predictable
variability in the amount of light it delivers, with a period of around 5000 years.
Flares can make the light side of Planet uninhabitable, although that can probably be achieve by
temperature alone (and it might be worthwhile to have the light side be marginally habitable).
If you want high vulcanism, add a gas giant or two in resonance with Planet to drive its orbital
eccentricity up.
First thing that occurs in that is that if the dwarf star is not itself tide-locked to the RCB star, there will presumably be a period when the primary is set (when the planet is between the two stars) and you might hard-pressed to tell the difference between that "night" and the one caused by the dimming of the primary. (Though that effect might be reduced in the orbital plane of the dwarf/planet system is "below" the level of the orbital plane of the dwarf/RCB star, at least on part of the planet...?) Yes? No?
Ideally, I would like to add some volcanisity, which as the gentleman suggested would require a gas giant in the "vicinity?" If is was a reflective gas giant, might this also go some way to meaning that the orbital period of the secondary around the RCB star is not as dark as the periods when the primary's light dims?
I would also like to include at least one moon. I am thinking of a small, irregular-shaped moon (presumably much closer than Luna and dramatically smaller, more sort of Phobos or even smaller). I am uncertain as to whether this would have to be tide-locked, or whether it could be in orbit. (I do like the image of a rough blocky moon seen even in the "day." Blame Stewart Cowley's TTA books for burning those sort of images into my mind at an impressionable age...!)
I am also toying with the idea that the planet should not be quite tide-locked, but has a very slow day/night cycle (i.e. thousand plus years), which presumably would also have some effect on the volcanicity (as well as providing for come ancient civilisations to have moved into the dark side.)
My next problem is going to be time measurement. Obviously, with no day/night cycle, there's not
going to be a "day" but you sort of need a unit of time of about that long. There's not a "year" either, strictly speaking, so determining where you'd start working time from is an interesting question. I also am fairly sure there would be no seasons, either, at least save very long-term.
I am considering "waning:" the period of time in which the primary RCB appears to rise and set. So, while not exactly a "night" because of the secondary, there would at least be (In the figures above, that would be 178 hours. If I cheat a bit and call it 180, you could have a
"waning" being a week of six thirty-hour segments). (I am sort of assuming that given the inevitable slight eccentricitys of orbital systems, that the secondary may past close to, but not necessarily eclipse the primary during it's rotation, at least not on a regular basis.) Depending on whether or not you could have an orbiting moon (or whether it'd have to be tide-locked), that period might be able to be worked in as maybe something to do with "day" or "year" or something. (I am guessing that the apparent orbital period of the distant binaries would be very long, thousands of years possibly.)
Suggestions and observations would be greatly welcomed on any and all of these points - and also any other suggestions or ideas these environmental structures might have on the life that would emerge (I've not quite got that far yet, since I wanted to start at the very basics first!)