- #1
ognik
- 643
- 2
Frustratingly although I can solve the ODE, I am getting a different answer to the book. Now going in circles so would appreciate a fresh pair of eyes.
The ODE (for a boat coasting with resistance proportional to $V^n$) starts as $ m\frac{dV}{dt} =-kV^n $ Find V(t) and x(t), V(0) = $V_0$
I solved the general case for n as $ V={V}_{0}[1+(n-1)\frac{k}{m}t{V}_{0}^{n-1}]^{\frac{1}{1-n}} $, which happily agrees with the book. But I simplified the power of the [...] term to $ V={V}_{0}[1+(n-1)\frac{k}{m}t{V}_{0}^{n-1}]^{n-1} $ - can't see that would make a difference?
Then, integrating again to get x(t), I let the term [...] = u, then $ dt=\frac{m}{(n-1)k{V}_{0}^{n-1}}du $
and $ x(t)=\frac{m{V}_{0}}{(n-1)k{V}_{0}^{n-1}}\int{u}^{n-1}du = \frac{m{V}_{0}}{(n-1)k{V}_{0}^{n-1}}\frac{{u}^{n}}{n} = \frac{m{V}_{0}^{2-n}}{kn(n-1)}[...]^n $
But the book shows $ \frac{m{V}_{0}^{2-n}}{k(2-n)}(1 - [...]^\frac{n-2}{n-1}) $?
The ODE (for a boat coasting with resistance proportional to $V^n$) starts as $ m\frac{dV}{dt} =-kV^n $ Find V(t) and x(t), V(0) = $V_0$
I solved the general case for n as $ V={V}_{0}[1+(n-1)\frac{k}{m}t{V}_{0}^{n-1}]^{\frac{1}{1-n}} $, which happily agrees with the book. But I simplified the power of the [...] term to $ V={V}_{0}[1+(n-1)\frac{k}{m}t{V}_{0}^{n-1}]^{n-1} $ - can't see that would make a difference?
Then, integrating again to get x(t), I let the term [...] = u, then $ dt=\frac{m}{(n-1)k{V}_{0}^{n-1}}du $
and $ x(t)=\frac{m{V}_{0}}{(n-1)k{V}_{0}^{n-1}}\int{u}^{n-1}du = \frac{m{V}_{0}}{(n-1)k{V}_{0}^{n-1}}\frac{{u}^{n}}{n} = \frac{m{V}_{0}^{2-n}}{kn(n-1)}[...]^n $
But the book shows $ \frac{m{V}_{0}^{2-n}}{k(2-n)}(1 - [...]^\frac{n-2}{n-1}) $?