Help with Weinberg p. 72 -- time dt for a photon to travel a distance d⃗x

In summary, Weinberg's equation for the time required for light to travel a distance is given as:0 = g_{00}dt^2 + 2g_{i0}dx^i dt + g_{ij}dx^i dx^j
  • #36
The EP just says that you can, at any point ##x_0## in spacetime always find local coordinates in which ##g_{\mu \nu}(x_0)=\eta_{\mu \nu}##. This implies that the symmetric matrix at each point must have 1 negative and 3 positive eigenvalues (Sylvester's theorem).
 
Physics news on Phys.org
  • #37
Kostik said:
Weinberg starts this discussion in the middle of p. 72 by saying "The values of the metric tensor ##g_{\mu\nu}## and the affine connection ##Γ^\lambda_{\mu\nu}## at a point X in an arbitrary coordinate system ##x^\mu## PROVIDE ENOUGH INFORMATION TO DETERMINE THE LOCALLY INERTIAL COORDINATES ##\xi^\alpha## in a neighborhood of X." *This* is what I am not yet convinced of.

Thanks again for any help.
Weinberg’s statement is a provable statement. Let [itex]x = 0[/itex] be the point in question, and define new coordinates [itex]y^{\mu}[/itex] by
[tex]x^{\mu} = A^{\mu}{}_{\alpha}y^{\alpha} - \frac{1}{4} A^{\mu}{}_{\tau}B^{\tau}{}_{\alpha \beta}y^{\alpha}y^{\beta} , \ \ \ \ \ (1)[/tex] where [itex] A^{\mu}{}_{\alpha}[/itex] and [itex] B^{\tau}{}_{\alpha \beta} = B^{\tau}{}_{\beta \alpha}[/itex] are constants to be determined from reasonable requirements. At [itex]x = 0[/itex], any rank-2 tensor [itex]g_{\mu\nu}(x)[/itex] will therefore have the following transformation law [tex]\bar{g}_{\alpha\beta}(0) = A^{\mu}{}_{\alpha} \ g_{\mu\nu}(0) \ A^{\nu}{}_{\beta} . \ \ \ \ \ \ \ \ \ \ \ \ (2)[/tex] In matrix form, (2) reads [tex]\bar{g} = A^{T} \ g \ A . \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (3)[/tex]

If [itex]g_{\mu\nu}(x)[/itex] is a metric tensor on some differentiable manifold [itex]M^{n}[/itex] then: (I) it must be symmetric, i.e., [itex]g_{\mu\nu}(x) = g_{\nu\mu}(x)[/itex]. And, more importantly: (II) In order to model our spacetime by an equivalent class of pairs [itex](M^{n} , g_{\mu\nu})[/itex], [itex]g_{\mu\nu}[/itex] must be a non-degenerate metric of Lorentz signature. (bellow I will be using the mostly minus signature).
Now,
(I) [itex]\Rightarrow \ \exists R \in O(n)[/itex] such that [itex]R^{T}gR = G[/itex] is diagonal, and
(II) [itex]\Rightarrow \ G = \mbox{diag}(\lambda_{0}^{2}, - \lambda_{1}^{2}, \cdots , - \lambda_{n-1}^{2})[/itex], where [itex]\lambda_{r} \neq 0 \ \forall r[/itex].
So, we have
[tex]R^{T} \ g \ R = \mbox{diag}(\lambda_{0}^{2}, -\lambda_{1}^{2}, -\lambda_{2}^{2} ,\cdots , -\lambda_{n-1}^{2}) . \ \ \ \ \ (4)[/tex] Define the matrix [itex]D = \mbox{diag}(1/\lambda_{0},1/\lambda_{1}, \cdots , 1/\lambda_{n-1})[/itex], and sandwich (4) by [itex]D[/itex] to obtain
[tex]DR^{T} \ g \ RD = \mbox{diag}(1, -1, -1, \cdots , -1) .[/tex] Thus [tex](RD)^{T} \ g \ (RD) = \eta . \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (5)[/tex] However, for any [itex]\Lambda \in SO(1,n-1)[/itex] , we also have [tex](RD \Lambda )^{T} \ g \ (RD \Lambda ) = \Lambda^{T} \eta \Lambda = \eta .[/tex] So, we can set [tex]A^{\mu}{}_{\alpha} = (RD)^{\mu}{}_{\alpha} \ \ \mbox{mod} \ \Lambda \in SO(1,n-1) . \ \ \ \ \ \ (6)[/tex] Using the choice (6) together with (5), equation (2) or (3) gives us our first desired result, that is [tex]\bar{g}_{\alpha \beta}(0) = A^{\mu}{}_{\alpha} \ g_{\mu\nu}(0) \ A^{\nu}{}_{\beta} = \eta_{\alpha\beta} . \ \ \ \ \ \ (7)[/tex]
The fact that the matrix [itex](RD)[/itex] determines [itex]A[/itex] up to Lorentz transformations can also be deduced from parameter-counting: there are [itex]n^{2}[/itex] parameters in [itex]A[/itex], [itex]n[/itex] parameters in [itex]D[/itex] and [itex]\frac{1}{2}n(n-1)[/itex] parameters in the [itex]O(n)[/itex] matrix [itex]R[/itex]. This leaves us with the [itex]n^{2} - [\frac{1}{2}n(n-1) + n] = \frac{1}{2}n(n-1)[/itex] free parameters needed for a Lorentz transformation.
To complete the proof of Weinberg’s statement, we need to choose the constants [itex]B^{\mu}{}_{\alpha\beta}[/itex] so that, together with the choice (6) for [itex]A^{\mu}{}_{\alpha}[/itex], the system [itex]y[/itex], as defined in (1), becomes locally inertial system. This requires a bit of algebra which I will describe them for you. Differentiating the transformation law [tex]\bar{g}_{\alpha\beta}(y) = \frac{\partial x^{\mu}}{\partial y^{\alpha}} \frac{\partial x^{\nu}}{\partial y^{\beta}} g_{\mu\nu}(x) ,[/tex] with respect to [itex]y^{\gamma}[/itex], we get at [itex]x = 0[/itex]
[tex]\frac{\partial \bar{g}_{\alpha\beta}}{\partial y^{\gamma}}(0) = T_{\alpha\beta\gamma}(0) - \frac{1}{2}\left(A^{\mu}{}_{\alpha}g_{\mu\nu}(0) A^{\nu}{}_{\tau}\right) B^{\tau}{}_{\beta\gamma} - \frac{1}{2} \left(A^{\mu}{}_{\tau}g_{\mu\nu}(0)A^{\nu}{}_{\beta}\right) B^{\tau}{}_{\alpha\gamma} , \ \ (8)[/tex]
where we have defined the object [tex]T_{\alpha\beta\gamma}(0) \equiv A^{\mu}{}_{\alpha}A^{\nu}{}_{\beta}A^{\rho}{}_{\gamma} \frac{\partial g_{\mu\nu}}{\partial x^{\rho}}(0) . \ \ \ \ (9)[/tex]
Using our first result (7), we find
[tex]\frac{\partial \bar{g}_{\alpha\beta}}{\partial y^{\gamma}}(0) = T_{\alpha\beta\gamma}(0) - \frac{1}{2} (B_{\alpha\beta\gamma} + B_{\beta\alpha\gamma}) . \ \ \ \ (8')[/tex]
So, to complete the proof we need to solve the following equation for [itex]B_{\alpha\beta\gamma}[/itex]
[tex]T_{\alpha\beta\gamma} = \frac{1}{2}\left(B_{\alpha\beta\gamma} + B_{\beta\alpha\gamma}\right) . \ \ \ (10)[/tex]
To do this, write another 2 copy of (10) using the permutation [itex](\alpha\beta\gamma) \to (\gamma\alpha\beta) \to (\beta\gamma\alpha)[/itex], then add the first two and subtract the third one. Then, due to [itex]B_{\alpha\beta\gamma} = B_{\alpha\gamma\beta}[/itex], you obtain the final result
[tex]B_{\alpha\beta\gamma} = T_{\alpha\beta\gamma}(0) + T_{\gamma\alpha\beta} (0) - T_{\beta\gamma\alpha}(0) ,[/tex] with [itex]T(0)[/itex] as defined by (9).
So, from the values of [itex]g_{\mu\nu}(0)[/itex] and [itex]\partial g (0) \sim \Gamma (0)[/itex] we were able to determine (up to Lorentz transformation) the constants [itex]A[/itex] and [itex]B[/itex] that are needed to make the [itex]y[/itex]-system locally inertial.
 
  • Like
Likes vanhees71, strangerep and dextercioby

Similar threads

Back
Top