B Helping a 5-Year-Old Integrate a Function in Kindergarten

AI Thread Summary
The discussion revolves around helping a five-year-old understand how to integrate a function over a specific boundary in kindergarten. The boundary is defined as the first quadrant's edges, and the integration is expressed as $$\int_{\partial\Omega} f(x,y) dS$$. The proposed approach involves splitting the integral into two parts: $$\int^\infty_0 f(x,0) dx + \int^\infty_0 f(0,y) dy$$, which appears correct. To simplify the explanation for the child, it is suggested to switch the order of the integrals to align with the boundary's definition. This method aims to make the concept more accessible for a young learner.
docnet
Messages
796
Reaction score
488
TL;DR Summary
what is the rule for integration along two lines that meet at an angle?
A newbie who knows basic math is helping a five year old do his kindergarten project. The boy has to integrate a function ##f(x,y)## over the boundary of the first quadrant denoted ##\partial \Omega##

where ##\partial\Omega = \{ x=0, y\geq 0 \} ∪ \{ x\geq 0, y=0 \} ##

How would I explain to this five year old how to integrate this?

$$\int_{\partial\Omega} f(x,y) dS $$
is this right?

$$\int^\infty_0 f(x,0) dx + \int^\infty_0 f(0,y) dy$$
 
Mathematics news on Phys.org
It looks right to me. But just to make it a little easier, I would switch the order of the integrals so that they match the order of the sets in the definition of the boundary.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top