- #1
Ackbach
Gold Member
MHB
- 4,155
- 93
Here is this week's POTW:
-----
For each positive integer $k$, let $A(k)$ be the number of odd divisors of $k$ in the interval $[1, \sqrt{2k}\,)$. Evaluate
\[
\sum_{k=1}^\infty (-1)^{k-1} \frac{A(k)}{k}.
\]
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
-----
For each positive integer $k$, let $A(k)$ be the number of odd divisors of $k$ in the interval $[1, \sqrt{2k}\,)$. Evaluate
\[
\sum_{k=1}^\infty (-1)^{k-1} \frac{A(k)}{k}.
\]
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!