- #1
Incand
- 334
- 47
Homework Statement
I'm having some trouble with questions asking me to "show" or "prove" instead of computing an answer so I'm looking for some input if I'm actually doing what I'm supposed to or not (and for the last one I don't know where to get started really.)
1. Show that ##T^*## is linear.
2. Show that ##(T^*)^* = T##.
3. Show that ##\langle v,Tw\rangle = \langle T^*v,w\rangle##.
4. Show that ##(ST)^* = T^*S^*##.
I realize this is quite a lot so even taking a look at one of the above would be very kind!
Homework Equations
The adjoint to the linear operator ##T:V \to W## is the mapping ##T^*:W \to V## that is defined by ##\langle Tv,w \rangle = \langle v,T^*w\rangle## for all ##v\in V## and ##w \in W##.
The Attempt at a Solution
1. Using the definition for adjoint and the scalar product we have
##\langle v, T^*(w+u)\rangle = \langle Tv,w+u \rangle = \langle Tv,w\rangle + \langle Tv,u\rangle = \langle v,T^*w\rangle + \langle v,T^*u\rangle = \langle v,T^*w +T^* u \rangle##.
And for ##\langle v, T*(\alpha w)\rangle = \langle Tv,\alpha w\rangle = \bar \alpha \langle Tv,w\rangle = \bar \alpha \langle v, T^* w \rangle = \langle v, \alpha T^*w\rangle##.
Since ##v## is any vector in ##V## we have that ##T^*(v+w) = T^*v+T^*w## and ##T^*(\alpha v) = \alpha T^*v## are the only possibilities and that should show the linearity.
2. From the definition and using the conjugate symmetry of the scalar product we have
##\langle T^*v,w \rangle = \langle v, (T^*)^*w\rangle = \overline{ \langle (T^*)^*,v \rangle }##
But we also have
##\langle T^*v,w \rangle = \overline{\langle w, T^*v\rangle}= \overline{\langle Tw,v\rangle } ##. Again since ##v## is any vector in ##V## we have ##(T^*)^* = T##.
3. As I understand the question this means either that the operators switches roles i.e. ##T: W\to V## and ##T^*:V\to W##. Is this true or I'm supposed to show this when the operators don't even operate on the same space?? If it's as I imagine, doesn't this follow immediately from (2)?
4. This is the one I'm not sure how to do. Writing up the definition I have and using (2)
##\langle STv , w\rangle = \langle v, (ST)^*w\rangle = \langle (S^*T^*)^*v,w \rangle## and I don't know how to push ahead.