- #1
FEAnalyst
- 346
- 147
- TL;DR Summary
- How to obtain the formulas for Hertz contact stress when force is replaced with prescribed displacement?
Hi,
one can easily find formulas for Hertz contact stress in various cases (two spheres, two cylinders and so on) when force is applied to one of the bodies. But how to get the equivalents of those formulas when prescribed displacement is used instead of stress ?
For example, I’ve found this equation for the case of two spheres made of the same material and having the same radii: $$\sigma_{C}=- \frac{E}{\pi (1- \nu^{2})} \sqrt{\frac{2h}{R}}$$
where: ##E## - Young’s modulus, ##\nu## - Poisson’s ratio, ##h## - prescribed displacement (one sphere moving towards the other), ##R## - radius.
For comparison, here’s the common formula for the same case but with force applied: $$\sigma_{C}=0.578304 \sqrt[3]{\frac{E^{2}F}{R^{2} (1- \nu^{2})^{2}}}$$
where: ##F## - applied force.
I am interested in other cases, such as a sphere on a flat plate. For this case, the formula with force is: $$\sigma_{C}=0.364309 \sqrt[3]{\frac{E^{2}F}{R^{2} (1- \nu^{2})^{2}}}$$
How can I convert it to get its equivalent for prescribed displacement ?
one can easily find formulas for Hertz contact stress in various cases (two spheres, two cylinders and so on) when force is applied to one of the bodies. But how to get the equivalents of those formulas when prescribed displacement is used instead of stress ?
For example, I’ve found this equation for the case of two spheres made of the same material and having the same radii: $$\sigma_{C}=- \frac{E}{\pi (1- \nu^{2})} \sqrt{\frac{2h}{R}}$$
where: ##E## - Young’s modulus, ##\nu## - Poisson’s ratio, ##h## - prescribed displacement (one sphere moving towards the other), ##R## - radius.
For comparison, here’s the common formula for the same case but with force applied: $$\sigma_{C}=0.578304 \sqrt[3]{\frac{E^{2}F}{R^{2} (1- \nu^{2})^{2}}}$$
where: ##F## - applied force.
I am interested in other cases, such as a sphere on a flat plate. For this case, the formula with force is: $$\sigma_{C}=0.364309 \sqrt[3]{\frac{E^{2}F}{R^{2} (1- \nu^{2})^{2}}}$$
How can I convert it to get its equivalent for prescribed displacement ?