Higgs field and nuclear reactions

In summary: That's why the final mass of the products is not the same as the mass of the fuel.In fusion the involved binding energies and corresponding "mass defects" are due to the strong interaction too.
  • #1
Andrewtv848
17
3
TL;DR Summary
What happens to the higgs field when say a fusion reaction occurs.
What happens to the higgs field when say a fusion reaction occurs. Like if mass is converted into energy and the higgs field gives a particle mass what happens to higgs field. I doubt this, but is the higgs field the mechanism that converts mass into gamma rays. Go easy on me I only have a high school degree.
 
Physics news on Phys.org
  • #2
Andrewtv848 said:
I doubt this, but is the higgs field the mechanism that converts mass into gamma rays.
I think the conversion of one particle into another is a product of whichever fields the particles are excitations of. In other words, an electron-positron annihilation into gamma rays involves the electron-positron field (they are excitations of the same field) and the electromagnetic field. I don't think the Higgs field is involved.

Andrewtv848 said:
What happens to the higgs field when say a fusion reaction occurs. Like if mass is converted into energy and the higgs field gives a particle mass what happens to higgs field.
Mostly nothing as far as my limited understanding tells me. The mass of the system of fuel particles is conserved and is equal to the mass of the system of product particles and radiation. I don't believe the Higgs field has anything to do with this process.

Note that mass-energy conversion is somewhat more complicated and nuanced than you might think. Consider the example I gave above of an electron-positron pair annihilating into two photons. It is true that both the electron and positron have mass while the photon doesn't. However, a system of particles, including systems of photons, have mass. If we were to put the electron and positron into a box that can contain any type of particle, including all photons, and let them annihilate then we would find that the box has the same mass both before and after the annihilation.

As always, someone correct me if I'm wrong.
 
  • #3
Andrewtv848 said:
What happens to the higgs field when say a fusion reaction occurs.
Nothing. The temperature of fusion reactions is far below the temperature of electroweak symmetry breaking, which is the temperature you need to reach before any significant interactions involving the Higgs field occur. Compare, for example, the temperature inside a fusion reactor with the temperature inside the LHC.
 
  • Like
Likes vanhees71
  • #4
Andrewtv848 said:
if mass is converted into energy and the higgs field gives a particle mass what happens to higgs field.
You are talking about two different kinds of mass here.

The "mass" that is converted to energy in fusion reactions is the total mass of a composite bound system--more precisely, the portion of that total mass that represents binding energy (the energy that had to be given up by the system to become bound).

The "mass" that the Higgs field gives to particles is the invariant mass of the individual particles.
 
  • Like
Likes vanhees71
  • #5
Drakkith said:
The mass of the system of fuel particles is conserved and is equal to the mass of the system of product particles and radiation.
This is not correct. For example, add up the mass of two deuterium nuclei and compare it to the mass of a helium-4 nucleus. The latter is smaller.
 
  • Like
Likes vanhees71
  • #6
PeterDonis said:
This is not correct. For example, add up the mass of two deuterium nuclei and compare it to the mass of a helium-4 nucleus. The latter is smaller.
Sure. My point was that the mass of the system was the same, which would include the helium-4 as well as any radiation, neutrinos, kinetic energy of the products, etc.
 
  • Like
Likes vanhees71 and Dale
  • #7
Drakkith said:
My point was that the mass of the system was the same, which would include the helium-4 as well as any radiation, neutrinos, kinetic energy of the products, etc.
Ah, ok. I didn't read carefully enough.
 
  • Like
Likes vanhees71
  • #8
One should also be aware that only a few percent of the mass of the matter around us is due to the Higgs mechanism, i.e., the Yukawa coupling of the quarks and leptons to the Higgs field and due to its non-vanishing vacuum-expectation value. The bulk rest of the mass is dynamically created by the strong interaction, mostly due to the "trace anomaly", i.e., the anomalous breaking of the approximate scale invariance of the strong interaction and a bit from the spontaneous breaking of the approximate chiral symmetry in the light-quark sector of QCD.

In fusion the involved binding energies and corresponding "mass defects" are due to the strong interaction too.
 
  • Like
Likes Drakkith

FAQ: Higgs field and nuclear reactions

What is the Higgs field?

The Higgs field is a theoretical field that is thought to permeate all of space and give particles their mass. It is a fundamental component of the Standard Model of particle physics.

How was the Higgs field discovered?

The existence of the Higgs field was first proposed by physicist Peter Higgs in the 1960s. It was confirmed in 2012 by experiments at the Large Hadron Collider, which detected the Higgs boson particle, a manifestation of the Higgs field.

What is the role of the Higgs field in nuclear reactions?

The Higgs field is not directly involved in nuclear reactions. However, it is responsible for giving particles their mass, which is a crucial factor in determining the stability and behavior of atomic nuclei.

How does the Higgs field interact with other particles?

The Higgs field interacts with particles through the Higgs boson, which is a carrier particle that gives other particles their mass. This interaction is what gives particles their mass and allows them to interact with other particles.

Can the Higgs field be manipulated or controlled?

At this time, there is no known way to manipulate or control the Higgs field. However, further research and experimentation may lead to a better understanding of this fundamental force and its potential applications.

Back
Top