- #1
mikeley
- 7
- 0
Hello,
I have a system of trigonometric equations from which I should find theta1,..., theta5. Is it possible you can give me a hint on how to proceed. Thanks.
theta, phi, psi, Px, Py, Pz, l1, l2, l3, l4, l5, d1, d2, d3, d4, d5 are all constants.
Cos[t1+t2] Cos[t3+t4] Cos[t5]+Sin[t1+t2] Sin[t5]=Cos[phi] Cos[theta]
Cos[t5] Sin[t1+t2]-Cos[t1+t2] Cos[t3+t4] Sin[t5]=Cos[theta] Sin[phi] Sin[psi]-Cos[psi] Sin[theta]
Cos[t1+t2] Sin[t3+t4]=Cos[psi] Cos[theta] Sin[phi]+Sin[psi] Sin[theta]
l1Cos[t1]+Cos[t1+t2] (l2+l3 Cos[t3]+Cos[t3+t4] (l4+l5 Cos[t5])+d5 Sin[t3+t4])+Sin[t1+t2] (d3+d4+l5 Sin[t5])=Px
Cos[t3+t4] Cos[t5] Sin[t1+t2]-Cos[t1+t2] Sin[t5]=Cos[phi] Sin[theta]
-Cos[t1+t2] Cos[t5]-Cos[t3+t4] Sin[t1+t2] Sin[t5]=Cos[psi] Cos[theta]+Sin[phi] Sin[psi] Sin[theta]
l1Sin[t1]+Sin[t1+t2] (l2+l3 Cos[t3]+Cos[t3+t4] (l4+l5 Cos[t5])+d5 Sin[t3+t4])-Cos[t1+t2] (d3+d4+l5 Sin[t5])=Py
Sin[t1+t2] Sin[t3+t4]=-Cos[theta] Sin[psi]+Cos[psi] Sin[phi] Sin[theta] Cos[t5] Sin[t3+t4]-Sin[phi]-Sin[t3+t4] Sin[t5]=Cos[phi] Sin[psi]
-Cos[t3+t4]=Cos[phi]Cos[psi]
d1+d2-d5 Cos[t3+t4]+l3 Sin[t3]+(l4+l5 Cos[t5]) Sin[t3+t4]=Pz
I have a system of trigonometric equations from which I should find theta1,..., theta5. Is it possible you can give me a hint on how to proceed. Thanks.
theta, phi, psi, Px, Py, Pz, l1, l2, l3, l4, l5, d1, d2, d3, d4, d5 are all constants.
Cos[t1+t2] Cos[t3+t4] Cos[t5]+Sin[t1+t2] Sin[t5]=Cos[phi] Cos[theta]
Cos[t5] Sin[t1+t2]-Cos[t1+t2] Cos[t3+t4] Sin[t5]=Cos[theta] Sin[phi] Sin[psi]-Cos[psi] Sin[theta]
Cos[t1+t2] Sin[t3+t4]=Cos[psi] Cos[theta] Sin[phi]+Sin[psi] Sin[theta]
l1Cos[t1]+Cos[t1+t2] (l2+l3 Cos[t3]+Cos[t3+t4] (l4+l5 Cos[t5])+d5 Sin[t3+t4])+Sin[t1+t2] (d3+d4+l5 Sin[t5])=Px
Cos[t3+t4] Cos[t5] Sin[t1+t2]-Cos[t1+t2] Sin[t5]=Cos[phi] Sin[theta]
-Cos[t1+t2] Cos[t5]-Cos[t3+t4] Sin[t1+t2] Sin[t5]=Cos[psi] Cos[theta]+Sin[phi] Sin[psi] Sin[theta]
l1Sin[t1]+Sin[t1+t2] (l2+l3 Cos[t3]+Cos[t3+t4] (l4+l5 Cos[t5])+d5 Sin[t3+t4])-Cos[t1+t2] (d3+d4+l5 Sin[t5])=Py
Sin[t1+t2] Sin[t3+t4]=-Cos[theta] Sin[psi]+Cos[psi] Sin[phi] Sin[theta] Cos[t5] Sin[t3+t4]-Sin[phi]-Sin[t3+t4] Sin[t5]=Cos[phi] Sin[psi]
-Cos[t3+t4]=Cos[phi]Cos[psi]
d1+d2-d5 Cos[t3+t4]+l3 Sin[t3]+(l4+l5 Cos[t5]) Sin[t3+t4]=Pz