Hohmann Orbit Transfer: Minimize Delta V for Bigger Orbit

  • Thread starter greg_rack
  • Start date
  • Tags
    Orbit
In summary, the Hohmann transfer is the most efficient way to move from one circular orbit to another. It requires the least delta-V possible.
  • #1
greg_rack
Gold Member
363
79
Hi guys,

just a short question of Hohmann transfer.
I got the derivation for the required ##\Delta v##, composed by the sum of two impulses, for establishing on a larger orbit... but how do we demonstrate it's actually the transfer which requires the smallest ##\Delta v##?
 
Physics news on Phys.org
  • #2
Let the initial and final circular orbits have radii ##a## and ##b## respectively. Right after the initial burn at point ##P_1## let the spaceship have velocity ##\mathbf{u}##, and right before the final burn at point ##P_2## let the spaceship have velocity ##\mathbf{v}##. Angular momentum is conserved during the transfer orbit from ##P_1## to ##P_2##, so$$a u_{\theta} = b v_{\theta} \implies v_{\theta} = \frac{a}{b} u_{\theta}$$Energy is also conserved during the transfer orbit, so \begin{align*}
u^2 - \frac{2GM}{a} &= v^2 - \frac{2GM}{b} \\

u_r^2 + u_{\theta}^2 - \frac{2GM}{a} &= v_r^2 + v_{\theta}^2 - \frac{2GM}{b}
\end{align*}now eliminate ##v_{\theta}## using the previous relation, i.e.\begin{align*}
v_r^2 = \left(1- \frac{a^2}{b^2} \right)u_{\theta}^2 + u_r^2 - 2GM \left( \frac{1}{a} - \frac{1}{b} \right)
\end{align*}Now consider the two burns. In the initial and final circular orbits the velocities are ##\mathbf{e}_{\theta} \sqrt{\frac{2GM}{a}}## and ##\mathbf{e}_{\theta}\sqrt{\frac{2GM}{b}}## respectively. The changes in the velocity due to the first burn is\begin{align*}

\mathbf{b}_1 &= \left( u_{\theta} - \sqrt{\frac{2GM}{a}} \right) \mathbf{e}_{\theta} + u_r \mathbf{e}_r \\

|\mathbf{b}_1|^2 &= \left( u_{\theta} - \sqrt{\frac{2GM}{a}} \right)^2 + u_r^2

\end{align*}Similarly for the second burn you can write \begin{align*}
|\mathbf{b}_2|^2 &= \left( \sqrt{\frac{2GM}{b}} - v_{\theta} \right)^2 + v_r^2 \\

&= \left( u_{\theta} - \frac{a}{b} \sqrt{\frac{2GM}{b}} \right)^2 + u_r^2 + 2GM \left( \frac{3}{b} - \frac{2}{a} - \frac{a^2}{b^3}\right)
\end{align*}having used the previous relation to eliminate ##v_r## and ##v_{\theta}##. The most efficient orbit means minimising ##\mathcal{Q} = |\mathbf{b}_1| + |\mathbf{b}_2|##. Holding ##u_{\theta}## constant, both ##|\mathbf{b}_1|## and ##|\mathbf{b}_2|## increase monotonically with ##u_r##. Consider decreasing ##u_r## until either (i) ##u_r = 0## (in which case ##P_1## is the periapsis of the transfer orbit) or otherwise (ii) until some critical non-zero value ##u_r = k## below which the rocket won't reach the final circular orbit (in which case ##P_2## is the apoapsis of the connecting orbit). Recall that the total energy of an orbit of semi-major axis ##\alpha## is ##-GM/2\alpha##. In either case, to reach the final circular orbit we must have ##\alpha \geq \dfrac{1}{2} \left(a + b \right)##.

For case (i), if ##P_1## is the periapsis of the transfer orbit (##u_{r} = 0## at ##P_1##) then\begin{align*}

u_{\theta}^2 - \frac{2GM}{a} = - \frac{GM}{\alpha} \implies u_{\theta}^2 \geq GM\left( \frac{b}{a(a+b)}\right)

\end{align*}You can prove yourself that this constraint implies both ##|\mathbf{b}_1|## and ##|\mathbf{b}_2|## are monotonically increasing functions of ##u_{\theta}##, and hence that ##\mathcal{Q}## is minimised for this ##u_{\theta} = \sqrt{GM\left( \dfrac{b}{a(a+b)}\right)}##.

Similarly for case (ii), if ##P_2## is the apoapsis of the transfer orbit (##v_{r} = 0## at ##P_2##) then\begin{align*}
v_{\theta}^2 - \frac{2GM}{b} &= -\frac{GM}{\alpha} \\

\frac{a^2}{b^2} u_{\theta}^2 &= GM\left( \frac{2}{b} - \frac{1}{\alpha} \right) \\

u_{\theta}^2 &\geq \frac{b^2}{a^2} GM \left( \frac{a}{b(a+b)}\right) = GM \left( \frac{b}{a(a+b)}\right)
\end{align*}as before.

Notice then, that the transfer orbit corresponding to the minimum ##u_{\theta}## has both ##P_1## as a periapsis and ##P_2## as an apoapsis; i.e. the Hohmann transfer!
 
Last edited by a moderator:
  • Informative
  • Like
Likes Dale, Klystron and berkeman
  • #3
Note that for some situations the three-burn bi-elliptic transfer orbit requires less delta-V that the corresponding two-burn Hohmann transfer orbit.
 
  • Informative
Likes DrStupid

Similar threads

Back
Top