Holmes' question at Yahoo Answers regarding a Cauchy-Euler equation

  • MHB
  • Thread starter MarkFL
  • Start date
In summary, the given differential equation, 3t^2 y'' + 6ty' = 1, can be transformed into a Cauchy-Euler equation and solved using the substitution t=e^x. It can also be solved using the substitution v=y' and applying the theorem for linear equations. The final solution has the form f(t) + A + g(t)B, where f(t) = 1/3 ln(t) and g(t) = 1/t.
  • #1
MarkFL
Gold Member
MHB
13,288
12
Here is the question:

Special Second Order Differential Equations help?

Solve the following differential equation

3t^2 y'' + 6ty' = 1 , t > 0

The solution has the form f(t) + A + g(t)B where

f(t) = ?

g(t) = ?

Here is a link to the question:

Special Second Order Differential Equations help? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
  • #2
Hello Holmes,

Method 1:

A linear second order equation that can be expressed in the form:

$\displaystyle ax^2\frac{d^2y}{dx^2}+bx\frac{dy}{dx}+cy=h(x)$,

where $a$, $b$, and $c$ are constants is called a Cauchy-Euler equation.

Although work on this equation was published by Leonhard Euler in 1769 and later by Augustin Cauchy, its solution was known to John Bernoulli prior to 1700. These equations are also called equidimensional equations.

The ODE you cite is a Cauchy-Euler equation, and we may transform it into an equation with constant coefficients by using the substitution $t=e^x$. We are given to solve:

$\displaystyle 3t^2\frac{d^2y}{dt^2}+6t\frac{dy}{dt}=1$

From the suggested substitution, it follows from the chain rule that:

$\displaystyle \frac{dy}{dx}=\frac{dy}{dt}\frac{dt}{dx}=\frac{dy}{dt}e^x=t\frac{dy}{dt}$

and hence:

(1) $\displaystyle t\frac{dy}{dt}=\frac{dy}{dx}$

Differentiating (1) with respect to $x$, we find from the product rule that:

$\displaystyle \frac{d^2y}{dx^2}=\frac{d}{dx}\left(t\frac{dy}{dt} \right)=\frac{dt}{dx}\frac{dy}{dt}+t\frac{d}{dx} \left(\frac{dy}{dt} \right)$

$\displaystyle \frac{d^2y}{dx^2}=\frac{dy}{dx}+t\frac{d^2y}{dt^2}\frac{dt}{dx}=\frac{dy}{dx}+t\frac{d^2y}{dt^2}e^x$

$\displaystyle \frac{d^2y}{dx^2}=\frac{dy}{dx}+t^2\frac{d^2y}{dt^2}$

and hence:

(2) $\displaystyle t^2\frac{d^2y}{dt^2}=\frac{d^2y}{dx^2}-\frac{dy}{dx}$

Substituting into the given ODE the expressions given in (1) and (2), we obtain:

$\displaystyle 3\left(\frac{d^2y}{dx^2}-\frac{dy}{dx} \right)+6\left(\frac{dy}{dx} \right)=1$

$\displaystyle \frac{d^2y}{dx^2}+\frac{dy}{dx}=\frac{1}{3}$

The characteristic roots are $r=-1,\,0$ and so the solution to the corresponding homogeneous equation is:

$y_h(x)=c_1+c_2e^{-x}$

To ensure linear independence, we must then assume a particular solution of the form:

$y_p(x)=Ax$

And so we compute:

$y_p'(x)=A$

$y_p''(x)=0$

and by substitution, we find:

$\displaystyle 0+A=\frac{1}{3}$ and thus we have:

$\displaystyle y_p(x)=\frac{1}{3}x$ and by superposition, we find:

$\displaystyle y(x)=y_h(x)+y_p(x)=c_1+c_2e^{-x}+\frac{1}{3}x$

Back substituting for $t$, we obtain:

$\displaystyle y(t)=c_1+\frac{c_2}{t}+\frac{1}{3}\ln(t)$

Method 2:

We are given to solve:

$\displaystyle 3t^2\frac{d^2y}{dt^2}+6t\frac{dy}{dt}=1$

Let:

$\displaystyle u(t)=\frac{dy}{dt}\,\therefore\,\frac{du}{dt}= \frac{d^2y}{dt^2}$

and we have:

$\displaystyle 3t^2\frac{du}{dt}+6t\cdot u=1$

$\displaystyle t^2\frac{du}{dt}+2t\cdot u=\frac{1}{3}$

Observe that we may write the left side of the equation as the differentiation of a product:

$\displaystyle \frac{d}{dt}\left(t^2u \right)=\frac{1}{3}$

Integrating with respect to $t$, we obtain:

$\displaystyle t^2u=\frac{1}{3}t+c_1$

Divide through by $t^2$:

$\displaystyle u=\frac{1}{3t}+\frac{c_1}{t^2}$

Back substitute for $u$:

$\displaystyle \frac{dy}{dt}=\frac{1}{3t}+\frac{c_1}{t^2}$

Integrate with respect to $t$:

$\displaystyle y(t)=\frac{1}{3}\ln(t)+\frac{c_1}{t}+c_2$

And so we may conclude:

$\displaystyle f(t)=\frac{1}{3}\ln(t)$

$\displaystyle g(t)=\frac{1}{t}$
 
Last edited:
  • #3
Another way: using the substitution $v=y'$ we get: $v'+\dfrac{2}{t}v=\dfrac{1}{3t^2}$ (linear equation). According to a well-known theorem its general solution is

$ve^{\int\frac{2}{t}\;dt}-\displaystyle\int \dfrac{1}{3t^2}e^{\int\frac{2}{t}\;dt}\;dt=C$

We get $vt^2-\dfrac{1}{3}t=C$, hence $y'=\dfrac{C}{t^2}+\dfrac{1}{3t}$. Integrating:

$y=\dfrac{-C}{t}+\dfrac{1}{3}\ln t+K=\dfrac{1}{3}\ln t+\dfrac{c_1}{t}+c_2$

Then, $f(t)=\dfrac{1}{3}\ln t,\;g(t)=\dfrac{1}{t}$.
 
Last edited:

Related to Holmes' question at Yahoo Answers regarding a Cauchy-Euler equation

1. What is a Cauchy-Euler equation?

A Cauchy-Euler equation is a type of linear differential equation in which the independent variable and its derivatives appear as powers. It is written in the form axny(n) + bx(n-1)y(n-1) + ... + kxy = 0, where a, b, ..., k are constants and n is a non-negative integer.

2. How do you solve a Cauchy-Euler equation?

To solve a Cauchy-Euler equation, you can use the method of undetermined coefficients or the method of reduction of order. In the method of undetermined coefficients, you assume that the solution has the form y = xr, where r is a constant to be determined. In the method of reduction of order, you use a substitution to reduce the equation to a separable form and then integrate to find the solution.

3. What is the significance of Cauchy-Euler equations?

Cauchy-Euler equations are important in mathematical analysis and in various areas of physics and engineering. They are used to model situations where a variable and its derivatives are related by a power function, such as in the context of exponential growth or decay.

4. Are there any real-world applications of Cauchy-Euler equations?

Yes, Cauchy-Euler equations have many real-world applications. They are used in population growth models, radioactive decay, circuit analysis, and many other areas of science and engineering. They are also used in solving boundary value problems and in the study of special functions.

5. Is there a specific method for solving Cauchy-Euler equations or does it depend on the equation?

There are multiple methods for solving Cauchy-Euler equations, and the method used may depend on the specific form of the equation and the initial or boundary conditions given. Some common methods include undetermined coefficients, reduction of order, and the use of Laplace transforms.

Similar threads

Replies
1
Views
5K
Replies
1
Views
1K
Replies
1
Views
2K
Replies
10
Views
4K
Replies
4
Views
2K
Replies
1
Views
2K
Back
Top