- #1
InvisibleBlue
- 9
- 0
Hi,
I'm trying to prove that the projective n-space is homeomorphic to identification space [tex]B^n / [/tex] ~ where for [tex]x, x' \in B^n[/tex]: [tex]x[/tex]~[tex]x'~\Leftrightarrow~x=x'[/tex] or [tex]x'=\pm x \in S^{n-1}[/tex],
The way I have tried to solve this is, I introduced:
[tex]{H_{+}}^{n}=\{x\in S^n | x_n \geq 0\}[/tex]
Then [tex]{H_{+}}^{n}\cong B^n[/tex] by the function [tex]F(x)=(\frac{x}{|x|}sin\frac{\pi}{2}|x|,~cos\frac{\pi}{2}|x|)[/tex] [here [tex] \frac{x}{|x|}sin\frac{\pi}{2}|x|\in \mathbb{R}^n [/tex] so [tex]cos\frac{\pi}{2}|x|[/tex] is the [tex](n+1)[/tex]th component of [tex]F(x)[/tex]]
Now I need to show that [tex]{H_{+}}^{n}/[/tex]~ [tex]\cong P^n[/tex] but I'm not sure how to do this rigorously without getting into a terrible mess.
Anyone has any ideas?
Thanks.
I'm trying to prove that the projective n-space is homeomorphic to identification space [tex]B^n / [/tex] ~ where for [tex]x, x' \in B^n[/tex]: [tex]x[/tex]~[tex]x'~\Leftrightarrow~x=x'[/tex] or [tex]x'=\pm x \in S^{n-1}[/tex],
The way I have tried to solve this is, I introduced:
[tex]{H_{+}}^{n}=\{x\in S^n | x_n \geq 0\}[/tex]
Then [tex]{H_{+}}^{n}\cong B^n[/tex] by the function [tex]F(x)=(\frac{x}{|x|}sin\frac{\pi}{2}|x|,~cos\frac{\pi}{2}|x|)[/tex] [here [tex] \frac{x}{|x|}sin\frac{\pi}{2}|x|\in \mathbb{R}^n [/tex] so [tex]cos\frac{\pi}{2}|x|[/tex] is the [tex](n+1)[/tex]th component of [tex]F(x)[/tex]]
Now I need to show that [tex]{H_{+}}^{n}/[/tex]~ [tex]\cong P^n[/tex] but I'm not sure how to do this rigorously without getting into a terrible mess.
Anyone has any ideas?
Thanks.