- #1
Stephen88
- 61
- 0
I'm trying to see if the map f:C->Z,f(a+bi)=a is a homomorphism of rings.
Let x=a+bi and y=c+di...then f(x+y)=a+c=f(x)+f(y) but f(xy)=f((ac-db)+(ad+bc)i)=ac-db/= f(x)f(y)...so the map is not a homomorphism of rings.
Is this correct?
Let x=a+bi and y=c+di...then f(x+y)=a+c=f(x)+f(y) but f(xy)=f((ac-db)+(ad+bc)i)=ac-db/= f(x)f(y)...so the map is not a homomorphism of rings.
Is this correct?