- #1
- 961
- 664
In http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=104112 , Pittman et al write:
Is it possible to make a version where the two photons pass through two different beam splitters altogether, but are brought together finally at the detectors? For example by slightly tilting the mirrors upwards and downwards, we can send one photon to a beam splitter that is located just above the central plane, while the other photon passes through another splitter just below the first. After exiting the beam splitters we can have some extra optics that bring the beams back into alignment.
As long as the phase relationships are maintained, HOM interference should still occur -- is this true?
"It is not uncommon for people to think that in these (Hong-Ou-Mandel) types of two-photon interference experiments the photons must arrive at the beam splitter at the same time, which seems to imply that some type of classical local interaction was required between two single photons meeting at the beam splitter and “agreeing” which way to go, or how to be polarized. In this Letter, we hope to dispel this misconception by reporting on a similar type of two-photon experiment in which interference is observed, even though the photons arrive at the beam splitter at much different times."
Is it possible to make a version where the two photons pass through two different beam splitters altogether, but are brought together finally at the detectors? For example by slightly tilting the mirrors upwards and downwards, we can send one photon to a beam splitter that is located just above the central plane, while the other photon passes through another splitter just below the first. After exiting the beam splitters we can have some extra optics that bring the beams back into alignment.
As long as the phase relationships are maintained, HOM interference should still occur -- is this true?