- #1
AxiomOfChoice
- 533
- 1
If f is a continuous functional on a normed space, do you have
[tex]
\sup_{\|x\| < 1} |f(x)| = \sup_{\|x\| = 1} |f(x)|
[/tex]
If so, why? If not, can someone provide a counterexample?
[tex]
\sup_{\|x\| < 1} |f(x)| = \sup_{\|x\| = 1} |f(x)|
[/tex]
If so, why? If not, can someone provide a counterexample?