- #1
himanshu121
- 653
- 1
I don't know how will i get these Limits for inverse Trigonometric functions for eg
[tex]2 \sin^{-1}x = - \pi - sin^{-1} [2x \sqrt{1-x^2}] for x \leq -\frac{1}{\sqrt{2}} [/tex]
=[tex] sin^{-1} [2x \sqrt{1-x^2}] -\frac{1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}} [/tex]
=[tex] \pi - sin^{-1} [2x \sqrt{1-x^2}] x \geq \frac{1}{\sqrt{2}} [/tex]
I want to know how we arrive at these values Or intervals
[tex]2 \sin^{-1}x = - \pi - sin^{-1} [2x \sqrt{1-x^2}] for x \leq -\frac{1}{\sqrt{2}} [/tex]
=[tex] sin^{-1} [2x \sqrt{1-x^2}] -\frac{1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}} [/tex]
=[tex] \pi - sin^{-1} [2x \sqrt{1-x^2}] x \geq \frac{1}{\sqrt{2}} [/tex]
I want to know how we arrive at these values Or intervals