- #1
kelly0303
- 580
- 33
Hello! I am curious about how different rotations on the Bloch sphere are done in practice. For example, assuming we start in the lower energy state of the z-axis (call it |0>), a resonant rotation on the Bloch sphere by ##\pi/2## around the x-axis will take you to ##\frac{|0>-i|1>}{\sqrt{2}}## (where ##|1>## is the excited state in the z direction). If we do the same thing around the y-axis we end up with ##\frac{|0>-|1>}{\sqrt{2}}##. This phase difference matters in practice in various scenarios (e.g. when doing a spin echo). But how do you change the rotation axis in practive? The field applied in the lab frame is ##E\cos{(\omega t + \phi)}##. You can make ##\omega## resonant and ##E## such that you get a ##\pi/2## pulse for the right time, but if you solve the Schrodinger equation in the rotating wave approximation, the ##\phi## term actually cancels in the final formula, so I am not sure what other degrees of freedom one has in order to achieve this. Thank you!