How big/small is Planck constant?

In summary, Planck's constant (h) has a very small numerical value in the SI units we use for macroscopic objects. This indicates that it is much smaller than the typical action or angular momentum of objects we encounter in our daily lives. Classical mechanics is recovered in the limit of h going to zero and can be compared to a minimum angular momentum in a central force system. However, in the Bohr model, h is seen as a multiple of h_bar and thus cannot be directly compared to other quantities like linear or angular momentum. In natural units, the units of measurement are not a factor and h, along with the speed of light and the gravitational constant, are considered fundamental constants of nature.
  • #1
arivero
Gold Member
3,496
173
I was thinking, given than h, c and G have different units, I can not compare a unit to other. But when we say that the quantum path integral recovers classical mechanics for very small h, there it seems we have a sense of how small h is.

So, h is small... respect to what? Is it respect to E? It can not be, because it has different units. Without G (thus quantum gravity), we can build a linear momentum p=E/c, but again we can not compare it with h. Is it to be compared respective to some angular momentum? Agaist the coupling constant? What if the coupling constant is of order unity, or even a lot bigger than unity? Do we still have quantum mechanics?
 
Physics news on Phys.org
  • #2
Tiny - beyond imagination.

Planck's length (a combination of Planck's constant, the Gravitational constant, and the speed of light)
is just over 10^-35 meters, much, much smaller that a Proton.

Planck's time () is less than 10^-43 seconds.

There are similar bizarrely tiny values for Plancks temperature and energy.
 
  • #3
Here is a great place to get a "feel" for it

http://htwins.net/scale2/
 
  • Like
Likes 1 person
  • #4
h has units of action or angular momentum, so when we say that it is "small" we have to have some typical action or angular momentum in mind. The fact that h has a numerical value of 6.6 * 10^-34 kg m^2/s in the SI units that we use for macroscopic objects indicates that it is going to be much smaller than the action or angular momentum of objects we encounter in our daily life, for which the SI system was devised. For example a hoop of mass 1 kg and radius 1 meter spinning about its axis of symmetry at 1 radian/s has an angular momentum of 1 kg m^2/s, which is more than 10^33 times larger than h. This is the sense in which h is small.
 
  • #5
The best thing that I have come by myself, and with the help of a Mr Sommerfeld, is to consider the minimum angular momentum of a central force in "relativistic" classical mechanics.

I mean, I set the equilibrium of forces for a circular orbit,

M V^2/R = K / R^2

And using L=MVR

L V/R^2 = K/R^2

and thus

L= K /V

now if the maximum possible speed is C, the minimum possible angular momentum for a stable circular orbit is

L = K/c

So it seems that at least I could compare h with this L. But when I consider, for instance, electromagnetism as a central force, I find that L is actually 137 times smaller than h.
 
  • #6
You are right in that the numeric value of h doesn't tell you anything. (Indeed, it's 200 MeV-fm; doesn't that make it "large"?)

One way to see that its small is to ask what would be the typical range of quantum numbers for, say, a child on a swing. Since those are something like 1035, I think it's reasonable to conclude h is small.
 
  • #7
Classical mechanics is recovered in the limit of Planck's constant going to zero. Since zero is small, that is also paraphrased as classical mechanics is recovered when Planck's constant is small.
 
  • #8
arivero said:
The best thing that I have come by myself, and with the help of a Mr Sommerfeld, is to consider the minimum angular momentum of a central force in "relativistic" classical mechanics.

I mean, I set the equilibrium of forces for a circular orbit,

M V^2/R = K / R^2

And using L=MVR

L V/R^2 = K/R^2

and thus

L= K /V

now if the maximum possible speed is C, the minimum possible angular momentum for a stable circular orbit is

L = K/c

So it seems that at least I could compare h with this L. But when I consider, for instance, electromagnetism as a central force, I find that L is actually 137 times smaller than h.

You have a mistake in your calculation. This is the Bohr model, and the whole point of the theory is that L is multiple of h_bar. For the lowest orbit n=1 hence L=h_bar.

http://en.wikipedia.org/wiki/Bohr_model.

However, your question is good and I will try to come back to it when I have the time.
 
  • #9
Here is a fantastic comparison.

The size of the human body is closer to the size of the observable universe than it is to Plancks constant. I know I didn't help your question but I felt like sharing :P
 
  • #10
'Large' and 'small' have no meaning for constants that have dimensions.
[itex]\e^2/\hbar c[/itex] is small because it =1/137, and is dimensionless.
[itex]\hbar[/itex] is small for people, but large for atoms.
 
  • #11
clem said:
[itex]\hbar[/itex] is small for people, but large for atoms.

I am not sure what you mean by that. h_bar has one measured value. the heuristic argument taking h_bar to zero to get classical is just for illustration purposes, just like when we assume we have a 100 g particles in QM to get the classical comparison which we actually do not have.
 
  • #12
In units with c=1, hbar=200 Mev-fm, which is 'large'. I should have said 'nuclei'.
hbar has many 'measured values'.
 
  • #13
Considering that classical physics is recovered when h -> 0, and our every day physical experiences seem classical, one could argue h is infinitely large in comparison!
 
  • #14
clem said:
In units with c=1, hbar=200 Mev-fm, which is 'large'. I should have said 'nuclei'.
hbar has many 'measured values'.

h_bar,c, G are called fundamental CONSTANTS of nature, the units of measurement is a different issue.



http://en.wikipedia.org/wiki/Natural_units
 

FAQ: How big/small is Planck constant?

1. How was Planck constant discovered?

Planck constant was discovered by German physicist Max Planck in 1900. He was studying the relationship between energy and frequency of radiation emitted by a blackbody. Through his experiments, he found that the energy of radiation is directly proportional to its frequency and that the proportionality constant is what is now known as Planck constant.

2. What is the value of Planck constant?

The value of Planck constant is approximately 6.626 x 10^-34 joule seconds (J·s). This value is a fundamental constant in quantum mechanics and plays a crucial role in many equations and theories in physics.

3. How small is Planck constant?

Planck constant is an incredibly small number, with a magnitude of 10^-34. To put this into perspective, it is about 10 billion trillion times smaller than the width of a human hair. This shows the incredible precision and sensitivity required in quantum mechanics.

4. Why is Planck constant important?

Planck constant is important because it is a fundamental constant that relates to the behavior of subatomic particles and the properties of electromagnetic radiation. It is used in many equations and theories, such as the Schrödinger equation and the Heisenberg uncertainty principle, and helps us understand the behavior of matter at a microscopic level.

5. How is Planck constant measured?

Planck constant is measured through various methods, such as the Kibble balance and the photoelectric effect. In the Kibble balance, the gravitational force on a known mass is balanced by the electromagnetic force on a coil with a current passing through it. In the photoelectric effect, the energy of photons is measured to determine the value of Planck constant.

Similar threads

Replies
2
Views
1K
Replies
23
Views
2K
Replies
7
Views
2K
Replies
5
Views
2K
Replies
1
Views
1K
Replies
1
Views
2K
Back
Top