- #1
drcrabs
- 47
- 0
Whence evaluating the area under the curve
[tex]y=\frac{1}{x} \\\ \mbox{for} \\\ 1 \leq x < \infty [/tex]
it evaluates to [tex]\infty [/tex]
But when evaluating the volume using
[tex] Volume = \pi \int y^2 dx \\\ \mbox{on} \\\ a \leq x < b [/tex]
hence
[tex] Volume = \pi \int \frac{1}{x^2} \\dx [/tex]
hence
[tex] Volume = \pi [-\ \frac{1}{x}] \\\ \mbox{on} \\\ 1 \leq x < \infty [/tex]
hence
[tex] Volume = \pi [0 - - 1] = \pi [/tex]
A finite value!
Im having trouble comprehending such concepts and ideas.
Can someone please explain?
[tex]y=\frac{1}{x} \\\ \mbox{for} \\\ 1 \leq x < \infty [/tex]
it evaluates to [tex]\infty [/tex]
But when evaluating the volume using
[tex] Volume = \pi \int y^2 dx \\\ \mbox{on} \\\ a \leq x < b [/tex]
hence
[tex] Volume = \pi \int \frac{1}{x^2} \\dx [/tex]
hence
[tex] Volume = \pi [-\ \frac{1}{x}] \\\ \mbox{on} \\\ 1 \leq x < \infty [/tex]
hence
[tex] Volume = \pi [0 - - 1] = \pi [/tex]
A finite value!
Im having trouble comprehending such concepts and ideas.
Can someone please explain?
Last edited: